

Easyregler, Compactregler

Variable Volumenstromregelung VVS-Regelgeräte

TVZ

TROX UNIVERSAL Regler, TROX LABCONTROL Regler

Ventilatorseitig runder Anschluss

Für hohe akustische Anforderungen im Zuluftbereich

Raumseitig rechteckiger Anschluss

Volumenstromregelgeräte für Zuluftsysteme mit variablen Volumenströmen in Gebäuden mit hohen akustischen Komfortkriterien

- Hochwirksamer, integrierter Schalldämpfer
- Entspannerboxausführung zur Reduzierung der Strömungsgeschwindigkeit
- Elektronische Regelkomponenten für unterschiedliche Anwendungen (Easy, Compact, Universal und LABCONTROL)
- Leckluftstrom bei geschlossener Regelklappe nach EN 1751, bis Klasse 4
- Gehäuse-Leckluftstrom nach EN 1751, bis Klasse C

Geprüft nach VDI 6022

Optionale Ausstattung und Zubehör

- Dämmschale zur Reduzierung von Abstrahlgeräuschen
- Zusatzschalldämpfer Serie TS zur Reduzierung von Strömungsgeräuschen
- Warmwasser-Wärmeübertrager Serie WT zur Nacherwärmung

Allgemeine Informationen	2	Legende	34
Funktion	4	Grundlagen und Definitionen	37
Technische Daten	5	Volumenstrom und Schnellauslegung	38
Schnellauslegung	6	Statische Mindest-Druckdifferenz Apstmin [Pa]	38
Ausschreibungstext	12	Statische Mindest-Druckdifferenz Apstmin [Pa]	38
Bestellschlüssel	14	Akustik	39
Varianten	23	Akustische Schnellauslegung	42
Abmessungen und Gewichte	25	Korrekturwerte zur akustischen Schnellauslegung	43
Produktdetails	30	Easy Product Finder	44

Allgemeine Informationen

Anwendung

- Rechteckige VVS-Regelgeräte für den Einsatz in raumlufttechnischen Anlagen (RLT-Anlagen)
- Für Regel-, Drossel- und Absperraufgaben im Zuluftbereich bei hohen akustischen Anforderungen
- Integrierter Schalldämpfer
- Volumenstromregelung im geschlossenenen Regelkreis mit Hilfsenergie
- Für variable oder konstante Volumenstromsysteme
- Absperrung durch kundenseitige Zwangsschaltung
- Mit geeigneten Regelkomponenten auch zur Kanal- oder Raumdruckregelung einsetzbar

Besondere Merkmale

- Integrierter Schalldämpfer mit mindestens 26 dB Einfügungsdämpfung bei 250 Hz
- Hygienisch getestet und zertifiziert
- Werkseitige Einstellung oder Programmierung und lufttechnische Prüfung
- Einstellung und nachträgliche Parametrierung an der Regelkomponente möglich, eventuell separates Einstellgerät erforderlich
- Revisionsöffnung zur Inspektion nach VDI 6022

Nenngrößen

125, 160, 200, 250, 315, 400

Varianten

- TVZ: Zuluftgerät
- TVZ-D: Zuluftgerät mit Dämmschale
- Geräte mit Dämmschale und/oder einem Zusatzschalldämpfer Serie TS für besonders hohe akustische Anforderungen
- Nachrüsten der Dämmschale nicht möglich

Bauteile und Eigenschaften

- Inbetriebnahmebereites Gerät, bestehend aus mechanischen Bauteilen und Regelkomponenten
- Mittelwert bildender Wirkdrucksensor zur Luftstrommessung
- Regelklappe
- Integrierter Schalldämpfer
- Revisionsöffnung
- Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet
- Jedes Gerät werkseitig auf speziellem lufttechnischen Prüfstand geprüft
- Dokumentation der Daten mit einer Prüfplakette oder einer Volumenstromskala auf dem Gerät
- Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D)

Anbauteile

- Easyregler: Kompakte Baueinheit aus Regler mit Einstellpotentiometern, Wirkdrucktransmitter und Stellantrieb
- Compactregler: Kompakte Baueinheit aus Regler, Wirkdrucktransmitter und Stellantrieb
- Universalregler: Regler, Wirkdrucktransmitter und Stellantriebe für spezielle Anwendungen
- LABCONTROL: Regelkomponenten für Luft-Management-Systeme

Zubehör

Doppellippendichtung (werkseitig aufgebracht)

Ergänzende Produkte

- Zusatzschalldämpfer Serie TS
- Wärmeübertrager Serie WT

Konstruktionsmerkmale

- Rechteckiges Gehäuse
- Ventilatorseitiger Rohrstutzen passend für runde Luftleitungen nach EN 1506 oder EN 13180
- Rohrstutzen mit Einlegesicke für Doppellippendichtung
- Raumseitiger Anschluss geeignet für Luftleitungsprofile
- Leitblech zur akustischen und aerodynamischen Optimierung hinter der Regelklappe
- Position der Regelklappe von außen an der Achse erkennbar
- Thermisch und akustisch wirksame Auskleidung

Materialien und Oberflächen

- Gehäuse und Regelklappe aus verzinktem Stahlblech
- Regelklappendichtung aus Kunststoff TPE
- Auskleidung aus Mineralwolle
- Wirkdrucksensor aus Aluminium
- Gleitlager aus Kunststoff
- Achse und Gestänge: Stahl verzinkt

Variante Dämmschale (-D)

- Dämmschale aus verzinktem Stahlblech
- Auskleidung aus Mineralwolle
- Körperschallisolierung aus Gummielementen Mineralwolle
- Nach EN 13501, Baustoffklasse A1, nicht brennbar
- RAL-Gütezeichen RAL-GZ 388
- Gesundheitlich unbedenklich durch hohe Biolöslichkeit nach deutscher Gefahrstoffverordnung und Anmerkung Q der europäischen Verordnung (EG) Nr. 1272/2008
- Durch aufkaschiertes Glasseidengewebe vor Abrieb durch strömende Luft bis max. 20 m/s geschützt
- Inert gegenüber Pilz- und Bakterienwachstum

Normen und Richtlinien

Erfüllt die Hygieneanforderungen nach

- EN 16798, Teil 3
- VDI 6022, Blatt 1
- DIN 1946, Teil 4
- Weitere Normen, Richtlinien gemäß Hygienezertifikat Gehäuse-Leckluftstrom:

Nenngröße 125 - 200

- EN 1751, Klasse C
- Nenngröße 250 400
- EN 1751, Klasse B

Leckluftstrom bei geschlossener Regelklappe:

Nenngröße 125 - 160

- EN 1751, Klasse 3
- DIN 1946 Teil 4, Erfüllung der allgemeinen Anforderungen an den zulässigen Leckluftstrom bei geschlossener Regelklappe Nenngröße 200 – 400
- EN 1751, Klasse 4
- DIN 1946 Teil 4, Erfüllung der erhöhten Anforderungen an den zulässigen Leckluftstrom bei geschlossener Regelklappe

Instandhaltung

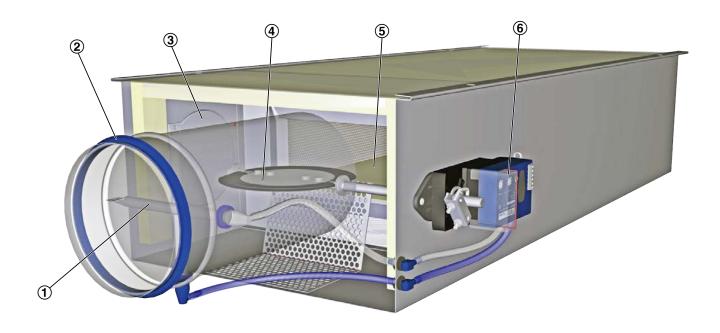
3 / 44

 Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt

Funktion

Zur Messung des Volumenstroms enthält das VVS-Regelgerät einen Wirkdrucksensor.

Die Regelkomponenten (Anbauteile) umfassen einen Wirkdrucktransmitter zur Umformung des Wirkdrucks in ein elektrisches Signal, einen Regler und einen Stellantrieb, als Easyregler, Compactregler oder als Einzelkomponenten (Universal oder LABCONTROL).


Der Sollwert kommt in den meisten Anwendungsfällen von einem Raumtemperaturregler.

Der Regler vergleicht den Istwert mit dem Sollwert und verändert bei Abweichungen das Führungssignal des Stellantriebs.

Ein integrierter Schalldämpfer reduziert die durch die Drosselung entstehenden Geräusche.

Aufgrund des größeren rechteckigen Querschnitts auf der Raumseite beträgt die Strömungsgeschwindigkeit etwa die Hälfte der Geschwindigkeit in der runden Luftleitung.

Schematische Darstellung TVZ

- ① Wirkdrucksensor
- ② Doppellippendichtung
- ③ Revisionsöffnung
- ④ Regelklappe
- ⑤ Integrierter Schalldämpfer
- ® Regelkomponenten, z. B. Easyregler

Technische Daten

Nenngrößen	125 – 400 mm
Volumenstrombereich	14 - 2007 l/s oder 50 - 7228 m³/h
Volumenstromregelbereich (Regler mit dynamischer Wirkdruckmessung)	ca. 10 – 100 % vom Nennvolumenstrom
Mindestdruckdifferenz	Bis zu 123 Pa (ohne Zusatzschalldämpfer)
maximal zulässige Druckdifferenz	1000 Pa
Betriebstemperatur	10 – 50 °C

Schnellauslegung

Die Schnellauslegung gibt einen guten Überblick über die Mindestdruckdifferenzen, die Volumenstromgenauigkeit und die zu erwartenden Schalldruckpegel im Raum. Zwischen angegebenen Werten darf linear interpoliert werden.

Die Schallleistungspegel zur Berechnung der Schalldruckpegel wurden im TROX Labor nach DIN EN ISO 5135 gemessen – siehe hierzu "Grundlagen und Definitionen".

Zu exakten Ergebnissen und Spektraldaten für alle Regelkomponenten führt die Auslegung mit unserem Auslegungsprogramm Easy Product Finder. Die Auswahl der Nenngröße erfolgt zunächst nach den gegebenen Volumenströmen q_{vmin} und q_{vmax}.

Volumenstrombereiche und Mindestdruckdifferenzen

Die Mindestdruckdifferenz der VVS-Regelgeräte ist eine wichtige Größe zur Planung des Luftleitungsnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten eine ausreichende Druckdifferenz über dem jeweiligen Regler (Δ_{pstat,min}) ansteht. Der Messpunkt oder die Messpunkte für die Drehzahlsteuerung des Ventilators sind dementsprechend auszuwählen. Die Volumenstrombereiche von VVS-Regelgeräten sind von der Nenngröße und von der verwendeten Regelkomponente (Anbauteil) abhängig.

Volumenstrombereiche und Mindestdruckdifferenzen

Regelkomponente dynamisches Messprinzip – Easy (Potentiometer)

Anbauteil: Easy

NG	av [l/a]	eu [ma3/h]	Δpstm	in [Pa]	Λαν [10/]
NG	qv [l/s]	qv [m³/h]	1	2	Δqv [±%]
125	14	50	1	2	20
125	56	201	13	18	9
125	98	353	39	55	7
125	140	504	79	111	5
160	24	83	1	2	19
160	94	339	12	18	9
160	165	595	35	53	6
160	236	851	72	109	5
200	37	133	1	2	19
200	150	540	11	22	9
200	263	948	34	65	6
200	376	1355	70	133	5
250	58	208	1	2	19
250	236	848	12	24	9
250	413	1488	37	72	6
250	591	2128	74	146	5
315	96	344	1	2	19
315	390	1405	12	20	9
315	685	2467	36	59	6
315	980	3528	73	121	5
400	157	563	1	1	19
400	638	2298	12	17	9
400	1120	4033	36	51	6
400	1602	5768	73	104	5

Grundgerät

² Grundgerät mit Zusatzschalldämpfer TS

Volumenstrombereiche und Mindestdruckdifferenzen

Regelkomponente dynamisches Messprinzip – q_{ν} erweitert

Anbauteile: BC0, BL0 **, BM0, BM0-J6

NC	au ([1/a]	au . [ma 3/la]	Δpstm	in [Pa]	A , [1 0/]
NG	qv [l/s]	qv [m³/h]	0	2	Δqv [±%]
125	14	50	1	2	20
125	68	244	19	26	8
125	121	437	59	84	6
125	175	631	123	174	5
160	24	83	1	2	19
160	114	411	17	26	8
160	205	738	54	82	6
160	296	1066	113	170	5
200	37	133	1	2	19
200	182	655	17	31	8
200	327	1176	53	100	6
200	471	1698	109	208	5
250	58	208	1	2	19
250	285	1027	18	34	8
250	513	1847	56	110	6
250	740	2666	116	229	5
315	96	344	1	2	19
315	473	1703	17	29	8
315	851	3062	55	91	6
315	1228	4421	114	190	5
400	157	563	1	1	19
400	774	2785	17	25	8
400	1391	5006	55	78	6
400	2007	7228	115	162	5

① Grundgerät

② Grundgerät mit Zusatzschalldämpfer TS

^{**} Regelkomponente läuft in Zukunft aus - bitte nicht für neue Projekte einplanen

Volumenstrombereiche und Mindestdruckdifferenzen

Regelkomponente dynamisches Messprinzip – $q_{\scriptscriptstyle \nu}$ Standard

Anbauteile: BUDN, BUDNF, LN0, LK0, LB0, XB0, XB4, (B13 *, B1B *)

NG	av [l/a]	cu [ma3/h]	Δpstm	in [Pa]	Λαν [+0/]
ING	qv [l/s]	qv [m³/h]	1	2	Δqv [±%]
125	14	50	1	2	20
125	58	207	14	19	9
125	101	365	42	59	6
125	145	522	84	119	5
160	24	83	1	2	19
160	97	349	13	19	9
160	171	616	38	57	6
160	245	882	77	117	5
200	37	133	1	2	19
200	155	557	12	23	9
200	272	980	37	70	6
200	390	1404	75	143	5
250	58	208	1	2	19
250	243	874	13	25	9
250	428	1539	39	77	6
250	612	2205	80	157	5
315	96	344	1	2	19
315	402	1448	13	21	8
315	709	2553	38	64	6
315	1015	3657	78	130	5
400	157	563	1	1	19
400	658	2368	13	18	8
400	1159	4173	39	54	6
400	1660	5978	79	111	5

① Grundgerät

② Grundgerät mit Zusatzschalldämpfer TS

^{*} Regelkomponente bereits ausgelaufen

Volumenstrombereiche und Mindestdruckdifferenzen

Regelkomponente statisches Messprinzip

Anbauteile: BUSN, BUSNF, BUSS, XDO, XD4, TUN, TUNF, TUS, TUSD, ELAB, (BP3 *, BPB *, BB3 *, BBB *)

NC	ev [l/e]	av. [ma3/b]	Δpstm	in [Pa]	Λον [1.0/]
NG	qv [l/s]	qv [m³/h]	1	2	Δqv [±%]
125	21	73	2	3	16
125	62	223	16	22	8
125	103	372	43	61	6
125	145	522	84	119	5
160	35	123	2	3	16
160	104	376	14	22	8
160	175	629	40	60	6
160	245	882	77	117	5
200	55	195	2	3	16
200	166	598	14	26	8
200	278	1001	38	73	6
200	390	1404	75	143	5
250	85	306	2	4	16
250	261	939	15	29	8
250	437	1572	41	80	6
250	612	2205	80	157	5
315	142	508	2	3	15
315	433	1558	15	24	8
315	724	2607	40	66	6
315	1015	3657	78	130	5
400	231	830	2	3	15
400	707	2546	15	21	8
400	1184	4262	40	57	6
400	1660	5978	79	111	5

① Grundgerät

② Grundgerät mit Zusatzschalldämpfer TS

^{*} Regelkomponente bereits ausgelaufen

Schnellauslegungstabelle Schalldruckpegel

In der Schnellauslegung sind praxisgerechte Dämpfungs- und Dämmungswerte (Systemdämpfung) in den Tabellen berücksichtigt. Liegt der Schalldruckpegel über dem zulässigen Wert, sind ein größeres Volumenstromregelgerät und/oder ein Schalldämpfer bzw. eine Dämmschale erforderlich. Weitere Informationen zu den akustischen Daten sind den Grundlagen und Definitionen zu entnehmen.

Schnellauslegungstabelle Strömungsgeräusch LPA

Regler inklusive Schalldämpfervarianten (gesamter Volumenstrombereich der Serie)

NO	eu . [1/e1	en a Francisco	150) Pa	500	Pa
NG	qv [l/s]	qv [m³/h]	0	2	1	2
125	14	50	< 15	< 15	17	< 15
125	68	244	27	16	31	20
125	121	437	31	21	35	25
125	175	631	34	n.V.	37	28
160	24	83	16	< 15	20	< 15
160	114	411	31	21	34	24
160	205	738	35	25	38	28
160	296	1066	37	n.V.	40	30
200	37	133	< 15	< 15	18	< 15
200	182	655	23	< 15	28	16
200	327	1176	26	18	31	20
200	471	1698	28	n.V.	32	25
250	58	208	< 15	< 15	< 15	< 15
250	285	1027	20	< 15	27	16
250	513	1847	26	18	32	20
250	740	2666	30	n.V.	35	26
315	96	344	< 15	< 15	22	< 15
315	473	1703	23	< 15	30	17
315	851	3062	27	20	33	22
315	1228	4421	30	n.V.	36	26
400	157	563	< 15	< 15	22	< 15
400	774	2785	23	< 15	31	18
400	1391	5006	27	22	34	24
400	2007	7228	31	n.V.	37	29

Strömungsgeräusch L_{PA} [dB(A)] bei statischer Druckdifferenz Δ_{pst} von 150 bzw. 500 Pa

① Grundgerät

② Grundgerät mit Zusatzschalldämpfer TS

n.V.: Angegebene statische Druckdifferenz Δ_{pst} ist kleiner als erforderliche Mindestdruckdifferenz $\Delta_{\text{pst min}}$.

Schnellauslegungstabelle Abstrahlgeräusch LPA

Regler inklusive Dämmschalenvariante (gesamter Volumenstrombereich der Serie)

NC	ev [l/e]	ov ([m3/h]	150	Pa	500) Pa
NG	qv [l/s]	qv [m³/h]	1	2	1	2
125	14	50	17	< 15	24	< 15
125	68	244	25	15	32	21
125	121	437	29	20	35	25
125	175	631	32	23	37	28
160	24	83	15	< 15	23	< 15
160	114	411	25	17	33	24
160	205	738	30	23	37	28
160	296	1066	34	27	40	32
200	37	133	18	< 15	27	15
200	182	655	28	20	36	26
200	327	1176	33	25	39	30
200	471	1698	36	29	42	33
250	58	208	18	< 15	28	18
250	285	1027	27	20	37	28
250	513	1847	32	25	40	32
250	740	2666	36	29	43	35
315	96	344	19	< 15	30	19
315	473	1703	29	20	39	30
315	851	3062	34	26	43	34
315	1228	4421	39	31	46	38
400	157	563	23	< 15	34	24
400	774	2785	31	23	41	33
400	1391	5006	36	28	45	37
400	2007	7228	40	33	47	40

Abstrahlgeräusch $L_{\text{\tiny PA}}$ [dB(A)] bei statischer Druckdifferenz $\Delta_{\text{\tiny pst}}$ von 150 bzw. 500 Pa

Hinweis:

Angaben zum Abstrahlgeräusch für Kombinationen aus Grundgerät sowie optionaler Dämmschale und Zusatzschalldämpfer können mit dem Auslegungsprogramm Easy Product Finder ermittelt werden.

① Grundgerät

② Grundgerät mit Dämmschale

n.V.: Angegebene statische Druckdifferenz Δ_{pst} ist kleiner als erforderliche Mindestdruckdifferenz $\Delta_{\text{pst min}}$.

Ausschreibungstext

Dieser Ausschreibungstext beschreibt eine Produktvariante, passend für viele Anwendungen. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Ausschreibungstext

VVS-Regelgeräte in rechteckiger Bauform für variable und konstante Volumenstromsysteme, für Zuluft, in 6 Nenngrößen. Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D). Inbetriebnahmebereites Gerät, bestehend aus den mechanischen Bauteilen und den elektronischen Regelkomponenten. Geräte enthalten einen Mittelwert bildenden Wirkdrucksensor zur Volumenstrommessung, eine Regelklappe und einen integrierten Schalldämpfer. Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet. Wirkdrucksensor mit Messbohrungen 3 mm, dadurch unempfindlich gegen Verschmutzung. Leitblech, angeordnet hinter der Regelklappe, zur akustischen und aerodynamischen Optimierung. Gehäuse mit akustisch und thermisch wirksamer Auskleidung. Position der Regelklappe von außen durch die Achsenform erkennbar. Regelklappe bei Auslieferung geöffnet, dadurch Luftströmung auch ohne Regelfunktion gegeben; ausgenommen Varianten mit definierter Sicherheitsstellung NC (Normally Closed). Erfüllt die Hygieneanforderungen nach EN 16798 Teil 3, VDI 6022, DIN 1946 Teil 4.

Besondere Merkmale

- Integrierter Schalldämpfer mit mindestens 26 dB Einfügungsdämpfung bei 250 Hz
- Hygienisch getestet und zertifiziert
- Werkseitige Einstellung oder Programmierung und lufttechnische Prüfung
- Einstellung und nachträgliche Parametrierung an der Regelkomponente möglich, eventuell separates Einstellgerät erforderlich
- Revisionsöffnung zur Inspektion nach VDI 6022

Materialien und Oberflächen

- Gehäuse und Regelklappe aus verzinktem Stahlblech
- Regelklappendichtung aus Kunststoff TPE
- Auskleidung aus Mineralwolle
- Wirkdrucksensor aus Aluminium
- Gleitlager aus Kunststoff
- Achse und Gestänge: Stahl verzinkt Mineralwolle:
- Nach EN 13501, Baustoffklasse A1, nicht brennbar
- RAL-Gütezeichen RAL-GZ 388
- Gesundheitlich unbedenklich durch hohe Biolöslichkeit nach deutscher Gefahrstoffverordnung und Anmerkung Q der europäischen Verordnung (EG) Nr. 1272/2008
- Durch aufkaschiertes Glasseidengewebe vor Abrieb durch strömende Luft bis max. 20 m/s geschützt
- Inert gegenüber Pilz- und Bakterienwachstum

Anschlussausführung

 Ventilatorseitig Rohrstutzen mit Einlegesicke für Doppellippendichtung, passend für Luftleitungen nach EN 1506 oder EN 13180. Raumseitig geeignet zum Anbau von Luftleitungsprofilen

Gleichwertigkeitskriterien

- Hygiene-Konformitätserklärung nach VDI 6022, Blatt 1 (01/2018), ÖNORM H 6020 (02/2007) und ÖNORM H 6021 (09/2003)
- Einstellung der Volumenströme ohne Einstellgerät mittels V_{min}- und V_{max}- Potentiometer
- Elektrische Anschlüsse mit Schraubklemmen, keine zusätzlichen Klemmdosen erforderlich
- Jeder Volumenstromregler werkseitig auf lufttechnischen Prüfstand geprüft und mit Plakette am Regler bescheinigt
- Akustische Daten ermittelt nach ÖNORM EN ISO 5135:1999

Technische Daten

- Nenngrößen: 125 400 mm
- Volumenstrombereich: 14 1602 l/s oder 50 5768 m³/h
- Mindestdruckdifferenz: bis zu 123 Pa (ohne Zusatzschalldämpfer)
- Maximal zulässige Druckdifferenz: 1000 Pa
- Leckluftstrom bei geschlossener Regelklappe nach EN 1751, Klasse 4 (Nenngrößen 125, 160, Klasse 3)
- Gehäuse-Leckluftstrom nach EN 1751, Klasse C (Nenngröße 250, 315, 400, Klasse B)

Ausschreibungstext Anbauteil

Variable Volumenstromregelung mit elektronischem Easyregler zur Aufschaltung einer Führungsgröße und einem Istwertsignal zur Einbindung in Gebäudeleittechnik.

- Versorgungsspannung 24 V AC/DC
- Signalspannungen 0 10 V DC
- Mit externen, potentialfreien Schaltern mögliche Zwangssteuerungen: ZU, AUF, q_{vmin} und q_{vmax}
- Potentiometer mit Prozentskalen zur Einstellung der Volumenströme $q_{\nu_{min}}$ und $q_{\nu_{max}}$ ohne Einstellgerät
- Istwertsignal auf Nennvolumenstrom bezogen, dadurch vereinfachte Inbetriebnahme und nachträgliche Verstellung
- Volumenstromregelbereich ca. 10 100 % vom Nennvolumenstrom
- Von außen gut sichtbare Kontrollleuchte zur Signalisierung der Funktionen: ausgeregelt, nicht ausgeregelt und Spannungsausfall
- Elektrische Anschlüsse mit Schraubklemmen
- Klemmen zum Anschluss der Versorgungsspannung doppelt, zur einfachen Weitergabe der Spannung an den nächsten Regler

Auslegungsdaten

- q_v _____ [m³/h]
- Δpst _____[Pa]

Strömungsgeräusch

- L_{PA} _____[dB(A)]
- Abstrahlgeräusch
- L_{PA} _____[dB(A)]

13 / 44

Bestellschlüssel

Bestellschlüssel Volumenstromregelung (mit Anbauteil Easy)

1 2 3 4 5	D / 160 / D	
1 2 3 4 5		

1 Serie 250 315 TVZ VVS-Regelgerät, Zuluft 400

2 Dämmschale

4 Zubehör Keine Eintragung: ohne Keine Eintragung: ohne D mit Dämmschale **D1** Doppellippendichtung

3 Nenngröße [mm] 5 Anbauteile (Regelkomponente) 125

160 Easy Volumenstromregler, dynamisch, Schnittstelle Analog, 200

Einstellung $q_{\mbox{\tiny vmin}}$ und $q_{\mbox{\tiny vmax}}$ mit Potentiometern

Bestellbeispiel: TVZ-D/200/Easy

Dämmschale mit 200 mm Nenngröße Easy Volumenstromregler, dynamisch, Schnittstelle Analog,

Anbauteile (Regelkomponente) Einstellung $q_{\mbox{\tiny vmin}} \,$ und $q_{\mbox{\tiny vmax}} \,$ mit Potentiometern

Bestellschlüssel Volumenstromregelung (mit Anbauteil VARYCONTROL)

1 Serie

TVZ VVS-Regelgerät, Zuluft

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Nenngröße [mm]

125 160

200 250

315 400

4 Zubehör

Keine Eintragung: ohne **D1** Doppellippendichtung

5 Anbauteile (Regelkomponente)

Zum Beispiel

BC0 Compactregler

XB4 Universalregler (VARYCONTROL)

7 Betriebsart

F Festwert (ein Sollwert)V variabel (Sollwertbereich)

8 Signalspannungsbereich

Für das Istwert- und Sollwertsignal

0 0 – 10 V DC **2** 2 – 10 V DC

9 Betriebswerte zur werkseitigen Einstellung

$$\begin{split} & \text{Volumenstrom [m^3/h oder I/s]} \\ & q_{v_{konst.}} \text{ (bei Betriebsart F)} \\ & q_{v_{min}} - q_{v_{max}} \text{ (bei Betriebsart V)} \end{split}$$

10 Klappenstellung

Nur Federrücklaufantriebe

NO stromlos AUF NC stromlos ZU

Bestellbeispiel: TVZ-D/160/D1/BC0/V0/180-850 m³/h

DämmschalemitNenngröße160 mmZubehörDoppellippendichtungAnbauteile (Regelkomponente)Compactregler, dynamisch, Schnittstelle AnalogBetriebsartvariabelSignalspannungsbereich0 – 10 V DC

Bestellschlüssel Volumenstromregelung (mit Anbauteil TROX UNIVERSAL)

1 Serie

TVZ VVS-Regelgerät, Zuluft

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne **D1** Doppellippendichtung

5 Anbauteile (Regelkomponente)

Regler TROX UNIVERSAL mit

TUN Stellantrieb (150 s)

TUNF Federrücklaufantrieb (150 s)

TUS Schnellläufer (3 s)

TUSD Schnellläufer (3 s), mit digitaler

Kommunikationsschnittstelle (TROX HPD)

6 Gerätefunktion

Raumregelung

RS Zuluftregelung (Room Supply)

7 Volumenstromvorgabe

M Master (RMF-Funktion)

S Slave

F Festwertregler

8 Signalspannungsbereich

0 0 - 10 V DC

2 2 - 10 V DC

9 Erweiterung der Anbauteile

Option 1: Stromversorgung

Keine Eintragung: 24 V AC/DC

TEM-TRF für 230 VAC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: automatischer Nullpunktabgleich

Keine Eintragung: ohne

Z EM-AUTOZERO mit Magnetventil

10 Betriebswerte zur werkseitigen Einstellung

Volumenstrom [m³/h oder l/s]

Master (RMF-Funktion)

q_{Vmin}: Minimaler Volumenstrom

q_{v_{max}}: Maximaler Volumenstrom

q_{vkonst_Zu}: Konstante Zuluft

 $q_{v_{konst_Ab}}$: Konstante Abluft

q_{VDiff}: Differenz Zuluft-Abluft

Festwert

 $q_{v_{konst}}$: Konstantvolumenstrom

Slave

Keine Eintragung notwendig

11 Klappenstellung

Nur Federrücklaufantriebe

NO stromlos AUF

NC stromlos ZU

Ergänzende Produkte

Raumbedieneinheit

BE-LCD 40-Zeichen-Display

TVZ

Bestellbeispiel: TVZ 200/TUS/RS/M/0/UMZ/600/1250/0/0/-100

Nenngröße	200 mm
Anbauteile (Regelkomponente)	Regler TROX UNIVERSAL, schnelllaufender Stellantrieb (3 s)
Gerätefunktion	Zuluftregelung
Volumenstromvorgabe	Master (RMF-Funktion)
Signalspannungsbereich	0 – 10 V DC
Erweiterung der Anbauteile	mit Erweiterungsmodul EM-TRF-USV Trafo für 230 V AC Versorgung mit USV-Funktion mit Erweiterungsmodul EM-BAC-MOD Modbus-RTU Schnittstelle mit Erweiterungsmodul EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich
Betriebswerte	$q_{v_{min}} = 600 \text{ m}^3/\text{h}, \ q_{v_{max}} = 1250 \text{ m}^3/\text{h}$ $q_{v_{konst_Zu}} = 0 \text{ m}^3/\text{h}, \ q_{v_{konst_Ab}} = 0 \text{ m}^3/\text{h}$ $q_{v_{Diff}} = -100 \text{ m}^3/\text{h}$

TRO TECHNIK

Bestellschlüssel Druckregelung (mit Anbauteil VARYCONTROL)

1 Serie

TVZ VVS-Regelgerät, Zuluft

2 Dämmschale

Keine Eintragung: ohne D mit Dämmschale

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne **D1** Doppellippendichtung

5 Anbauteile (Regelkomponente)

Zum Beispiel

XF0 Compactregler Kanaldruck

XF4 Universalregler Kanaldruck (VARYCONTROL)

6 Gerätefunktion/Einbauort

Bestellbeispiel: TVZ/160/D1/XF4/PDS/F/2/470 Pa/NO

PDS Kanaldruckregelung Zuluft

PRS Raumdruckregelung Zuluft

7 Betriebsart

F Festwert (ein Sollwert) V variabel (Sollwertbereich)

8 Signalspannungsbereich

Für das Istwert- und Sollwertsignal

0 0 - 10 V DC

2 2 - 10 V DC

9 Betriebswerte zur werkseitigen Einstellung

Differenzdruck [Pa]

Bei Kanaldruckregelung Differenzdruck [Pa] immer als

Absolutwert ohne Vorzeichen

Δp_{konst} (bei Betriebsart F) $\Delta p_{min} - \Delta p_{max}$ (bei Betriebsart V)

10 Klappenstellung

Nur Federrücklaufantriebe

NO stromlos AUF

NC stromlos ZU

Destenderspiel: 1 42/100/D I/XI 4/I DON /2/4/01 a/NO	
Nenngröße	160 mm
Zubehör	Doppellippendichtung einseitig
Anbauteile (Regelkomponente)	VARYCONTROL Universalregler Kanaldruck
Gerätefunktion	Kanaldruckregelung Zuluft
Betriebsart	Festwert
Signalspannungsbereich	2 – 10 V DC
Betriebswert	470 Pa
Klappenstellung	stromlos Auf

Bestellschlüssel Druckregelung (mit Anbauteil TROX UNIVERSAL)

1 Serie

TVZ VVS-Regelgerät, Zuluft

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne **D1** Doppellippendichtung

5 Anbauteile (Regelkomponente)

Regler TROX UNIVERSAL mit

TUN Stellantrieb (150 s)

TUNF Federrücklaufantrieb (150 s)

TUS Schnellläufer (3 s)

TUSD Schnellläufer (3 s), mit digitaler

Kommunikationsschnittstelle (TROX HPD)

6 Gerätefunktion

Druckregelung

PRS Raumdruckregelung Zuluft

PDS Kanaldruckregelung Zuluft

7 Differenzdruckvorgabe

MFP Master, Konstantdruckregelung

MVP Master, variable Druckregelung

SFP Slave, Konstantdruckregelung

SVP Slave, variable Druckregelung

8 Signalspannungsbereich

0 0 - 10 V DC

2 2 - 10 V DC

9 Erweiterung der Anbauteile

Option 1: Stromversorgung

Keine Eintragung: 24 V AC/DC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP. Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Volumenstrommessung

Keine Eintragung: ohne

V EM-V Volumenstrommessung für Druckregelung

Option 4: automatischer Nullpunktabgleich

Keine Eintragung: ohne

Z EM-AUTOZERO Magnetventil (nur mit V)

10 Betriebswerte zur werkseitigen Einstellung

Druck[Pa], Volumenstrom [m³/h oder l/s]

Slave SVP

 $\Delta p_{\mbox{\tiny min}}\!\!:$ minimaler Differenzdruck

Δp_{max}: maximaler Differenzdruck

Slave SFP

 Δp_{konst} : Konstantdifferenzdruck

Master MFP und MVP wie Slave, jedoch zusätzlich

q_{Vmin}: minimaler Volumenstrom

 $q_{v_{max}}$: maximaler Volumenstrom

qvkonst Zul: konstante Zuluft

q_{v_{konst_Ab}}: konstante Abluft

qvDiff: Differenz Zuluft-Abluft

11 Klappenstellung

Nur Federrücklaufantriebe

NO stromlos AUF

NC stromlos ZU

Ergänzende Produkte

Raumbedieneinheit

BE-LCD 40-Zeichen-Display

Differenzdrucktransmitter für Raum- oder Kanaldruckregelung gesondert bestellen, z. B.

PT-699 für Raumdruckregelung

PT-699-DUCT für Kanaldruckregelung, inklusive Schlauch und

Messnippel

TVZ

Bestellbeispiel: TVZ/200/TUS/PRS/MVP/0/B/-10/-60/ 600/1250/ 0/ 0/-100

Nenngröße 200 mm Anbauteile (Regelkomponente) Regler TROX UNIVERSAL, schnelllaufender Stellantrieb (3 s) Gerätefunktion Raumdruckregelung Zuluft Differenzdruckvorgabe Master, variable Druckregelung Signalspannungsbereich 0 - 10 V DC mit Erweiterungsmodul EM-BAC-MOD Erweiterung der Anbauteile BACnet MS/TP-Schnittstelle Δp_{min} = -10 Pa, Δp_{max} = -60 Pa

 $q_{v_{min}}$ = 600 m³/h, $q_{v_{max}}$ = 1250 m³/h Betriebswerte $q_{vkonst_Zu} = 0 \text{ m}^3/h, q_{vkonst_Ab} = 0 \text{ m}^3/h$ $q_{vDiff} = -100 \text{ m}^3/\text{h}$

Bestellschlüssel Raumregelung (mit Anbauteil EASYLAB)

1 Serie

TVZ VVS-Regelgerät, Zuluft

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne **D1** Doppellippendichtung

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

6 Antriebe

S Schnellläufer (3 s)

SD Schnellläufer (3 s), mit digitaler Kommunikationsschnittstelle (TROX HPD)

7 Gerätefunktion

Raumregelung

RS Zuluftregelung (Room Supply)

PC Druckregelung (Pressure Control)

9 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung Keine Eintragung: 24 V AC/DC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: automatischer Nullpunktabgleich

Keine Eintragung: ohne

Z EM-AUTOZERO Magnetventil für automatischen

Nullpunktabgleich

10 Zusatzfunktionen

Ohne Raum-Management Funktion

LAB abluftgeführtes System (Laboratorien)

CLR zuluftgeführtes System (Reinräume)

Mit Raum-Management-Funktion

LAB-RMF abluftgeführtes System

CLR-RMF zuluftgeführtes System

11 Betriebswerte zur werkseitigen Einstellung

(nur bei aktivierter Raum-Management-Funktion erforderlich)

Volumenstrom [m³/h oder l/s], Druck [Pa]

Gesamtabluft/-zuluft Raum:

q_{v1}: Standardbetrieb

q_{v2}: reduzierter Betrieb

q_{v3}: erhöhter Betrieb

 q_{v4} : konstante Zuluft

q_{√5}: konstante Abluft

 q_{v6} : Differenz Zu-/Abluft

Δp_{soll}: Solldruck (nur bei Druckregelung)

Ergänzende Produkte

Raumbedieneinheit (nur für Geräte mit RMF)

BE-LCD 40-Zeichen-Display

Differenzdrucktransmitter bei Gerätefunktion

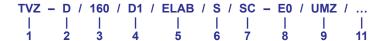
 $Raumdruck regelung\ gesondert\ bestellen,\ z.\ B.$

PT-699 Messbereich ±50 Pa oder ±100 Pa

PT-GB604 Messbereich ±100 Pa

Bestellbeispiel: TVZ/200/ELAB/SD/RS/CLR-RMF/3500/1000/5000/250/0/-150

Dämmschale	ohne
Nenngröße	200 mm
Anbauteile (Regelkomponente)	EASYLAB Regler TCU3 mit schnelllaufendem Stellantrieb (3 s)
Antrieb	schnelllaufender Stellantrieb (3 s), mit digitaler
Ailties	Kommunikationsschnittstelle
Gerätefunktion	Zuluftregelung (Room Supply)
Zusatzfunktion	Zuluftgeführtes System mit Raum-Management-Funktion
	$q_{v1} = 3500 \text{ m}^3/\text{h}$
	$q_{v2} = 1000 \text{ m}^3/\text{h}$
Ratriahswarta	$q_{v3} = 5000 \text{ m}^3/\text{h}$


 $q_{v5} = 0$ $q_{v6} = -150 \text{ m}^3/\text{h}$

 $q_{v4} = 250 \text{ m}^3/\text{h}$

Bestellschlüssel Einzelregelung (mit Anbauteil EASYLAB)

1 Serie

TVZ VVS-Regelgerät, Zuluft

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne **D1** Doppellippendichtung

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

6 Antriebe

S Schnellläufer (3 s)

SD Schnellläufer (3 s), mit digitaler Kommunikationsschnittstelle (TROX HPD)

7 Gerätefunktion

Einzelregelung

SC Zuluftregler

Nenngröße

Gerätefunktion

8 Externe Volumenstromvorgabe

E0 Spannungssignal 0 - 10 V DC

Bestellbeispiel: TVZ/315/ELAB/S/SC/F/2800 m³/h

Anbauteile (Regelkomponente)

Antrieb

Externe Volumenstromvorgabe

Betriebswert

E2 Spannungssignal 2 – 10 V DC

2P kundenseitige Schaltkontakte für 2 Schaltstufen

3P kundenseitige Schaltkontakte für 3 Schaltstufen

F Volumenstrom Festwert, ohne Aufschaltung

9 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung Keine Eintragung: 24 V AC/DC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: automatischer Nullpunktabgleich

Keine Eintragung: ohne

Z EM-AUTOZERO Magnetventil für automatischen

Nullpunktabgleich

11 Betriebswerte zur werkseitigen Einstellung

Volumenstrom [m³/h oder l/s]

Je nach externer Volumenstromvorgabe

E0, E2: $q_{v_{min}}/q_{v_{max}}$

2P: q_{v1}/q_{v2}

3P: $q_{v_1}/q_{v_2}/q_{v_3}$

 $q_{v_1} = 2800 \text{ m}^3/\text{h}$

F: q_{v1}

315 mm

EASYLAB Regler TCU3
schnelllaufender Stellantrieb (3 s)
Zuluftregler
Volumenstrom Festwert

Varianten

VVS-Regelgerät Variante TVZ

Volumenstromregelgerät zur variablen Zuluftvolumenstromregelung

Regelgerät mit Dämmschale (TVZ-D)

- Volumenstromregelgerät mit Dämmschale zur variablen Zuluftvolumenstromregelung
- Für Räume, in denen das Abstrahlgeräusch des Gerätes nicht ausreichend durch eine Zwischendecke gedämmt ist
- Für die ventilatorseitigen runden Luftleitungen im Bereich des betrachteten Raums sind kundenseitig geeignete Maßnahmen zur Dämmung vorzusehen
- Für eine optimale Lösung sollten kundenseitig auch die raumseitigen eckigen Luftleitungen gedämmt werden
- Dämmschale nicht nachrüstbar

Materialien

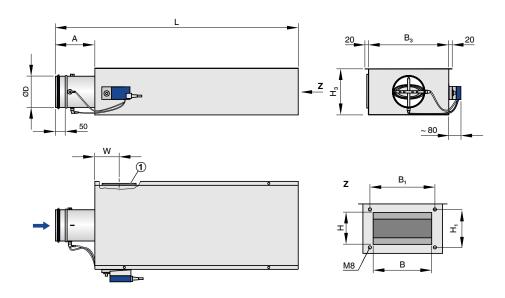
Ausführung Standard

Bestellschlüsseldetail	Bauteil	Material
	Gehäuse	Stahlblech verzinkt
	Wirkdrucksensor	Aluminiumrohr
	Regelklappe	Stahlblech verzinkt
_	Regelklappendichtung	Kunststoff TPE
	Achse und Gestänge	Stahl verzinkt
	Gleitlager	Kunststoff TPE
	Auskleidung	Mineralwolle nach EN 13501, Baustoffklasse A1, nicht brennbar

Option Dämmschale

Bestellschlüsseldetail	Bauteil	Material
	Dämmschalengehäuse	Stahlblech verzinkt
D	Körperschallisolierung	Polyethylen, PE
	Auskleidung	Mineralwolle nach EN 13501, Baustoffklasse A1, nicht brennbar

Option Doppellippendichtung


Bestellschlüsseldetail	Bauteil	Material
D1	Doppellippendichtung	Gummi, EPDM

Abmessungen und Gewichte

Regelgerät ohne Dämmschale (TVZ)

Hinweis:

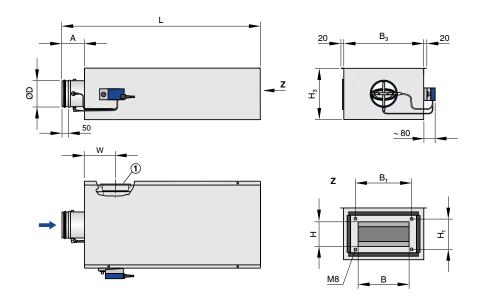
Gesamtlänge L bezieht sich auf die gesamte Gehäuselänge.

Anschlusslänge im montierten Zustand reduziert sich um ca. 12 mm. Siehe Details Luftleitungsprofil.

Abgebildet ist Regelkomponente Serie Easy, Compact.

Individuelle Abmessungen siehe Abschnitt Platzbedarf für Inbetriebnahme und Instandhaltung.

① Revisionsöffnung


Abmessungen/Gewichte für TVZ

NG	В	Н	L	ØD	А	B₁	В₃	H₁	H₃	W	kg
125	198	152	1185	124	150	232	300	186	236	115	21
160	308	152	1235	159	200	342	410	186	236	115	25
200	458	210	1520	199	200	492	560	244	281	115	33
250	598	201	1690	249	250	632	700	235	311	215	55
315	798	252	1690	314	250	832	900	286	361	215	73
400	898	354	2070	399	250	932	1000	388	446	215	118

Regelgerät mit Dämmschale (TVZ-D)

Hinweis:

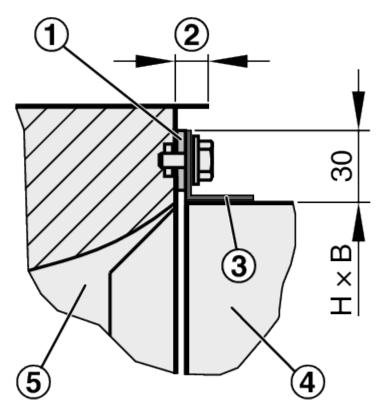
Gesamtlänge L bezieht sich auf die gesamte Gehäuselänge.

Anschlusslänge im montierten Zustand reduziert sich um ca. 12 mm. Siehe Details Luftleitungsprofil.

Abgebildet ist Regelkomponente Serie Easy, Compact.

Individuelle Abmessungen siehe Abschnitt Platzbedarf für Inbetriebnahme und Instandhaltung.

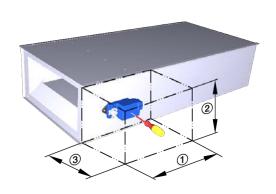
① Revisionsöffnung


Abmessungen/Gewichte für TVZ-D

NG	В	Н	L	ØD	Α	B₁	B₃	H₁	Н₃	W	kg
125	198	152	1185	124	110	232	380	186	316	155	41
160	308	152	1235	159	160	342	490	186	316	155	50
200	458	210	1520	199	160	492	640	244	361	155	63
250	598	201	1690	249	210	632	780	235	391	255	95
315	798	252	1690	314	210	832	980	286	441	255	133
400	898	354	2070	399	210	932	1080	388	526	255	193

Detail Luftleitungsprofil

- 1 Komprimierbare Dichtung, kundenseitig
- 2 Anschlussprofil beidseitig ca. 12 mm eingerückt
- 3 Luftleitungsprofil
- 4 Luftleitung
- 5 Regelgerät



Platzbedarf für Inbetriebnahme und Instandhaltung

Um die Arbeiten zur Inbetriebnahme und Instandhaltung zu ermöglichen, ausreichenden Bauraum im Bereich der Anbauteile freihalten. Gegebenenfalls sind Revisionsöffnungen in ausreichender Größe erforderlich, so dass die Anbauteile leicht zugänglich sind.

Zugänglichkeit der Anbauteile

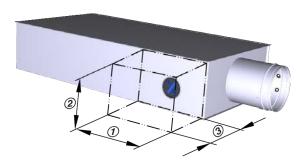
Produktbeispiele

Schematische Darstellung erforderlicher Bauräume

BC0, BUDNF, XD4, TUN

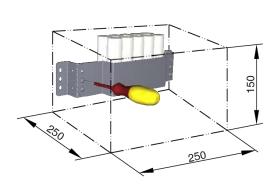
Platzbedarf

rializateudi i									
Anbauteil	1	2	3						
VARYCONTROL									
Easyregler: Easy	400	300	300						
Compactregler: BC0, BL0 *, BM0, BM0-J6, LN0, LK0, XB0, XD0, XF0	400	300	300						
Universalregler: B13 *, B1B *, BB3 *, BBB *, BG3 *, BGB *, BH3 *, BHB *, BP3 *, BPB *, BPG *, BR3 *, BRB *, BRG *, BS3 *, BSB *, BSG *, BUDN, BUDNF, BUSN, BUSNF, BUSS, BUPN, BUPNF, BURN, BURNF, XB4, XD4, XF4	700	300	300						
TROX UNIVERSAL									
TROX UNIVERSAL: TUN, TUS, TUSD	900	350	400						
LABCONTROL									
EASYLAB: ELAB	900	350	400						


^{*} Regelkomonente bereits ausgelaufen

^{**} Regelkomponente läuft in Zukunft aus - bitte nicht für neue Projekte einplanen.

Zugänglichkeit der Revisionsöffnung



Schematische Darstellung erforderlicher Bauräume

Platzbedarf für die Revisionsöffnung

Anbauteil	1	2	3
Revisionsöffnung	400	300	300

Zugänglichkeit des Notstromakkumulators

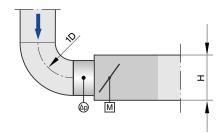
Produktbeispiel

Schematische Darstellung erforderlicher Bauräume

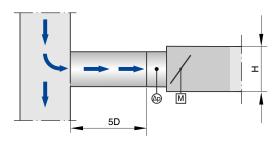
Hinweis: Separater Bauraum für Befestigung und Zugänglichkeit des Notstromakkumulators (optionales Zubehör bei Regelkomponenten TROX UNIVERSAL oder LABCONTROL EASYLAB).

Anbauteil TVZ/.../TUN/.../U

Produktdetails


Einbau und Inbetriebnahme

- Lageunabhängig (ausgenommen Geräte mit statischem Wirkdrucktransmitter)
- Bohrungen in der Gehäusefalzkante passend für Gewindestangen M10
- TVZ-D: Bei Dämmschalenausführung kundenseitig raumseitige Luftleitungen bis an die Dämmschale des Reglers dämmen


Anströmbedingungen

Die Volumenstromgenauigkeit Δ_{qV} gilt für gerade Anströmung. Formstücke wie Bögen, Abzweige oder Querschnittsveränderungen verursachen Turbulenzen, die die Messung beeinflussen können. Bei Ausführung von Luftleitungsanschlüssen, wie z. B. dem Abzweig von einer Hauptleitung, ist die EN 1505 zu beachten. Für manche Einbausituationen sind gerade Anströmlängen erforderlich.

Bogenanschluss

Abzweig von einer Hauptleitung

Ein Bogen mit mindestens 1D Krümmungsradius – ohne zusätzliche gerade Anströmlänge vor dem VVS-Regelgerät – hat keinen nennenswerten Einfluss auf die Volumenstromgenauigkeit.

Das Abzweigen einer Strömung von einer Hauptleitung verursacht starke Turbulenzen. Die angegebene Volumenstromgenauigkeit Δ_{qv} ist nur mit mindestens 5D gerader Anströmlänge zu erreichen.

	nenten VAR	i	Duveldnen eneitten	Otallantriak	Cabrileat
Anbauteil	Regelgröße	Schnittstelle	Drucktransmitter	Stellantrieb	Fabrikat
Гани		I .	asyregler – dynamisch	language land intermient	0
Easy	qv	0 – 10 V	integriert	langsamlaufend, integriert	1
			npactregler – dynamisch		
BC0	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	integriert	langsamlaufend, integriert	2
BL0 **	qv	LonWorks FTT 10- Schnittstelle	integriert	langsamlaufend, integriert	2
BM0	qv	Modbus RTU/BACnet MS/TP	integriert	langsamlaufend, integriert	2
BM0-J6	qv	Modbus RTU/BACnet MS/TP mit RJ12 Steckbuchse (für X-AIRCONTROL)	integriert	langsamlaufend, integriert	2
LK0	qv	KNX-Schnittstelle	integriert	langsamlaufend, integriert	5
LN0	qv	0 – 10 V oder 2 – 10 V	integriert	langsamlaufend, integriert	⑤
XB0	qv	0 – 10 V oder 2 – 10 V	integriert	langsamlaufend, integriert	3
		Co	mpactregler – statisch		
XD0	qv	0 – 10 V oder 2 – 10 V	integriert	langsamlaufend, integriert	3
XF0	Δρ	0 – 10 V oder 2 – 10 V	integriert, Regelbereich einstellbar 25 – 550 Pa	langsamlaufend, integriert	3
		VARYCONTF	ROL Universalregler – dynamis	sch	
B13 *	qv	0 – 10 V oder 2 – 10 V	integriert	langsamlaufend, separat	2
B1B *	qv	0 – 10 V oder 2 – 10 V	integriert	Federrücklaufantrieb, separat	2
BUDN	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	langsamlaufend, separat	2
BUDNF	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	Federrücklaufantrieb, separat	2
XB4	qv	0 – 10 V oder 2 – 10 V	integriert	Federrücklaufantrieb, separat	3
		VARYCON ⁻	TROL Universalregler – statisc	ch	
BB3 *	qv	2 – 10 V	Einzelkomponente	langsamlaufend, separat	2
BBB *	qv	2 – 10 V	Einzelkomponente	Federrücklaufantrieb, separat	2
BG3 *	Δρ	2 – 10 V	Einzelkomponente, 100 Pa	langsamlaufend, separat	2
BGB *	Δр	2 – 10 V	Einzelkomponente, 100 Pa	Federrücklaufantrieb, separat	2
BH3 *	Δρ	2 – 10 V	Einzelkomponente, 600 Pa	langsamlaufend, separat	2
BHB *	Δρ	2 – 10 V	Einzelkomponente, 600 Pa	Federrücklaufantrieb, separat	2
BP3 *	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente	langsamlaufend, separat	2
BPB *	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente	Federrücklaufantrieb, separat	2
BPG *	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente	schnelllaufend, separat	2
BR3 *	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 100 Pa	langsamlaufend, separat	2
BRB *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 100 Pa	Federrücklaufantrieb, separat	2
BRG *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 100 Pa	schnelllaufend, separat	2
BS3 *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 600 Pa	langsamlaufend, separat	2
BSB *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 600 Pa	Federrücklaufantrieb, separat	2
BSG *	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 600 Pa	schnelllaufend, separat	2
BUPN	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar 25 – 450 Pa	langsamlaufend, separat	2

Anbauteil	Regelgröße	Schnittstelle	Drucktransmitter	Stellantrieb	Fabrikat
BUPNF	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar 25 – 450 Pa	Federrücklaufantrieb, separat	2
BURN	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar -5010 Pa oder 10 50 Pa	langsamlaufend, separat	2
BURNF	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar -5010 Pa oder 10 50 Pa	Federrücklaufantrieb, separat	2
BUSN	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	langsamlaufend, separat	2
BUSNF	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	Federrücklaufantrieb, separat	2
BUSS	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert schnelllaufend, separat		2
XD4	qv	0 – 10 V oder 2 – 10 V	integriert	Federrücklaufantrieb, separat	3
XF4	Δρ	0 – 10 V oder 2 – 10 V	integriert, Regelbereich einstellbar 25 – 550 Pa	Federrücklaufantrieb, separat	3

^{*} Regelkomponente bereits ausgelaufen

Regelkomponenten TROX UNIVERSAL

Anbauteil	Regelgröße	Schnittstelle	Drucktransmitter	Stellantrieb	Fabrikat
		VARYCON	ROL Universalregler – statisc	h	
TUN	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver	qv = integriert, Δp = separat ,	langsamlaufend, separat	①
TUNF	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver		Federrücklaufantrieb, separat	①
TUS	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver	qv = integriert, Δp = separat ,	schnelllaufend, separat	①
TUSD	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver		schnelllaufend mit digitaler Kommunikationsschnittstelle (TROX HPD), separat	①

q_v Volumenstrom

① TROX

^{**} Regelkomponente läuft in Zukunft aus - bitte nicht für neue Projekte einplanen

 $q_{_{\scriptscriptstyle V}}$ Volumenstrom

 $[\]Delta_{\!\scriptscriptstyle o}$ Druckdifferenz

① TROX, ② TROX/Belimo, ③ TROX/Gruner, ⑤ Siemens

 $[\]Delta_{\!\scriptscriptstyle p}$ Druckdifferenz

Regelkomponenten LABCONTROL EASYLAB

Anbai	uteil	Regelgröße	egelgröße Schnittstelle Drucktransmitter		Stellantrieb	Fabrikat
				EASYLAB		
ELA	AΒ	qv, Δp *	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus, BACnet, Webserver		schnelllaufend, separat oder schnelllaufend mit digitaler Kommunikationsschnittstelle (TROX HPD), separat	③

① TROX

* Regelgröße abhängig von der VVS-Regelgeräteserie

- TVR, TVRK: Laborabzug, Raumzuluft, Raumabluft, Raumdruck, Einzelregler
- TVLK: Laborabzug, Einzelregler
- TVJ, TVT: Raumzuluft, Raumabluft, Raumdruck, Einzelregler
- TVZ, TZ-Silenzio: Raumzuluft, Raumdruck, Einzelregler
- TVA, TA-Silenzio: Raumabluft, Raumdruck, Einzelregler

Legende

Maßangaben für eckige Geräte

B [mm]

Breite der Luftleitung

B, [mm]

Lochabstand im Luftleitungsprofil (Breite)

B, [mm]

Außenabmessung des Luftleitungsprofils (Breite)

H [mm]

Höhe der Luftleitung

H₁ [mm]

Lochabstand im Luftleitungsprofil (Höhe)

 H_2 [mm]

Außenabmessung des Luftleitungsprofils (Höhe)

Maßangaben für runde Geräte

ØD [mm]

Grundgeräte aus Stahlblech: Außendurchmesser des Anschlussstutzens, Grundgeräte aus Kunststoff: Innendurchmesser des Anschlussstutzens

ØD₁ [mm]

Lochkreisdurchmesser von Flanschen

 $\mathbf{ØD}_{2}$ [mm]

Außendurchmesser von Flanschen

L [mm]

Gerätelänge einschließlich Anschlussstutzen

L₁ [mm]

Gehäuse- oder Dämmschalenlänge

n[]

Anzahl Schraubenlöcher von Flanschen

T [mm]

Flanschdicke

Allgemeingültige Angaben

m [kg]

Gerätegewicht (Masse) einschließlich der minimal notwendigen Anbauteile (Regelkomponente)

NG [mm]

Nenngröße

f_m [Hz]

Mittenfrequenz des Oktavbandes

 L_{PA} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des VVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt L_{PA1} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des VVS-Regelgerätes mit Zusatzschalldämpfer, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA2} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des VVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA3} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des VVS-Regelgerätes mit Dämmschale, A-bewertet, Systemdämpfung berücksichtigt

Hinweis zu akustischen Daten: Alle Schalldruckpegel basieren auf einem Referenzwert von 20 µPa.

q_{vNenn} [m³/h]; [l/s]

Nennvolumenstrom (100 %): Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Internet und in der Produktbroschüre publiziert und im Auslegungsprogramm Easy Product Finder hinterlegt. Referenzwert zur Berechnung von Prozentwerten (z. B. q_{vmax}). Obere Grenze des Einstellbereichs und maximal möglicher Volumenstromsollwert des VVS-Regelgerätes.

q_{vmin Gerät} [m³/h]; [l/s]

Technisch minimaler Volumenstrom: Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Auslegungsprogramm Easy Product Finder hinterlegt. Untere Grenze des Einstellbereichs und minimaler regelbarer Volumenstromsollwert des VVS-Regelgerätes. Sollwerte unterhalb q_{vmin Gerät} (wenn q_{vmin} gleich 0 eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung.

q_{vmax} [m³/h]; [l/s]

Kundenseitig einstellbare, obere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmax} kann nur kleiner oder gleich q_{vNenn} eingestellt werden. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet) wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte maximale Wert (q_{vmax}) zugeordnet (siehe Kennlinie).

 q_{vmin} [m³/h]; [l/s]

Kundenseitig einstellbare, untere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmin} sollte nur kleiner oder gleich q_{vmax} eingestellt werden. q_{vmin} nicht kleiner als $q_{vmin \, Gerät}$ einstellen, Regelung sonst instabil, oder die Regelklappe schließt. q_{vmin} gleich 0 ist ein gültiger Wert. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (q_{vmin}) zugeordnet (siehe Kennlinie).

q_v [m³/h]; [l/s] Volumenstrom

∆_{qv} [%]

Volumenstromgenauigkeit der eingestellten Volumenströme

Δ_{pst} [Pa]

Statische Druckdifferenz

∆_{pst min} [Pa]

Statische Mindestdruckdifferenz: Die statische Mindestdruckdifferenz entspricht dem Druckverlust des VVS-Reglers bei geöffneter Regelklappe, verursacht durch Strömungswiderstände (Regelklappe). Bei zu geringer Druckdifferenz am VVS-Regler wird selbst bei geöffneter Regelklappe unter Umständen der Sollvolumenstrom nicht erreicht. Wichtige Größe zur Planung des Kanalnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Reglern eine ausreichende statische Mindestdruckdifferenz ansteht und dazu unter anderem der Messpunkt oder die Messpunkte für die Drehzahlsteuerung entsprechend ausgewählt sind.

Längenangaben

Für alle Längenangaben ohne abgebildete Maßeinheit gilt grundsätzlich die Einheit Millimeter [mm].

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich.

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler). Wichtige Unterscheidungsmerkmale: Transmitter: dynamischer Transmitter für saubere Luft bzw. statischer Transmitter für verschmutzte Luft. Stellantrieb: Standardantrieb langsamlaufend, Federrücklaufantrieb für Sicherheitsstellung oder schnelllaufender Antrieb. Schnittstellentechnik: Analogschnittstelle oder digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen.

Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

Grundlagen und Definitionen

VVS-Regelgeräte

- Grundlagen und Definitionen
- Volumenstrombereiche und Schnellauslegung
- Akustik und Schnellauslegung
- Messung Strömungs- und Abstrahlgeräusch
- Korrekturwerte zur akustischen Schnellauslegung
- Easy Product Finder (EPF)

Grundlagen und Definitionen

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler).

Wichtige Unterscheidungsmerkmale:

Transmitter

- Dynamischer Transmitter f
 ür saubere Luft
- Statischer Transmitter f
 ür verschmutzte Luft Stellantrieb
- Standardantrieb langsamlaufend
- Federrücklaufantrieb für Sicherheitsstellung
- Schnelllaufender Antrieb

Schnittstellentechnik

- Analogschnittstelle
- Digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen

Volumenstromregler

37 / 44

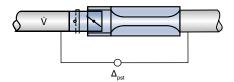
Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

PD-11/2021 - DE/de

Volumenstrom und Schnellauslegung

Volumenstrombereiche

Die im Produktdatenblatt abgebildeten Tabellen zur Volumenstromauslegung stellen die nutzbaren Volumenstrombereiche des Grundgerätes in Kombination mit den elektronischen Regelkomponenten dar.


Jedes Grundgerät bietet aufgrund seiner strömungstechnischen Eigenschaften einen bestimmten Volumenstrombereich. Jede Regelkomponente ermöglicht aufgrund der verbauten Komponenteneigenschaften und insbesondere der verwendeten Differenzdrucktransmittertechnologie eine vollständige oder eingeschränkte Ausnutzung des Volumenstrombereichs des Grundgerätes.

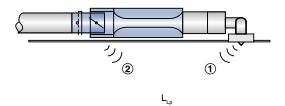
Für die Auswahl eines Volumenstromreglers und des erforderlichen Volumenstromregelbereichs sind daher sowohl das Grundgerät als auch die gewählte Regelkomponente entscheidend. Die Schnellauslegung stellt daher für die Grundgeräteserie die Volumenstrombereiche in Kombination mit verschiedenen Regelkomponenten (TROX Anbauteilen) dar.

Statische Mindestdruckdifferenz Anstrain [Pa]

Die statische Mindestdruckdifferenz entspricht dem Druckverlust des VVS-Regelgerätes bei geöffneter Regelklappe, verursacht durch Strömungswiderstände (Sensorrohre, Klappenmechanik). Bei zu geringer Druckdifferenz am VVS-Regelgerät wird selbst bei vollständig geöffneter Regelklappe unter Umständen der Sollvolumenstrom nicht erreicht. Die statische Mindestdruckdifferenz ist eine wichtige Größe zur Planung des Kanalnetzes sowie zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung und ist daher Bestandteil der Schnellauslegung für die Volumenstrombereiche. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten eine ausreichende statische Mindestdruckdifferenz ansteht und dazu unter anderem der Messpunkt oder die Messpunkte für die Drehzahlsteuerung entsprechend ausgewählt sind.

Statische Druckdifferenz

Akustik


Strömungsgeräusch

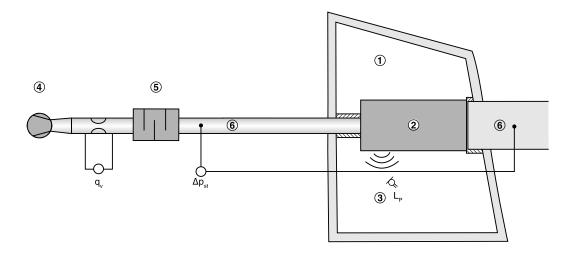
Die an den Einbauten (Regelklappe, Sensorrohre etc.) entstehenden Geräusche breiten sich **in der Luftleitung** als Strömungsgeräusch aus und gelangen durch Luftdurchlässe in die zu belüftenden Räume. Die Pegelminderung durch die Luftleitung und deren Einbauten – wie Umlenkungen und Abzweigungen sowie Mündungsreflexion und Raumdämpfung – kann in der akustischen Berechnung berücksichtigt werden und trägt somit zur Minderung der erforderlichen Dämpfung durch Schalldämpfer bei.

Abstrahlung

Die an den Einbauten (Regelklappe, Sensorrohre etc.) entstehenden Geräusche dringen **über die Gehäusewand** in die benachbarte Umgebung und damit je nach Einbauort auch in die zu belüftenden Räume. Die Berücksichtigung der Pegelminderung durch Deckendämmung und Raumdämpfung kann hier ebenfalls das Ergebnis der akustischen Berechnung positiv beeinflussen.

Geräuschdefinition

- ① Strömungsgeräusch
- ② Abstrahlgeräusch

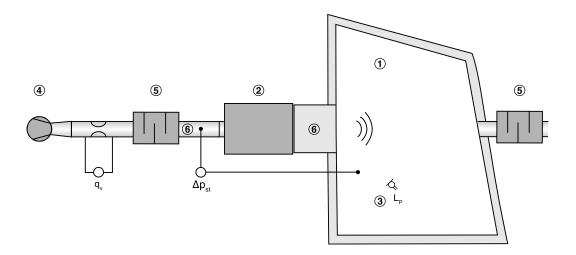


Messmethoden

Die akustischen Daten des Strömungs- und Abstrahlgeräusches werden nach EN ISO 5135 ermittelt. Alle Messungen werden in einem Hallraum nach EN ISO 3741 durchgeführt.

Labortechnische Untersuchung von Abstrahlgeräusch und Strömungsrauschen der Produkte zur Darstellung in den Produktdatenblättern

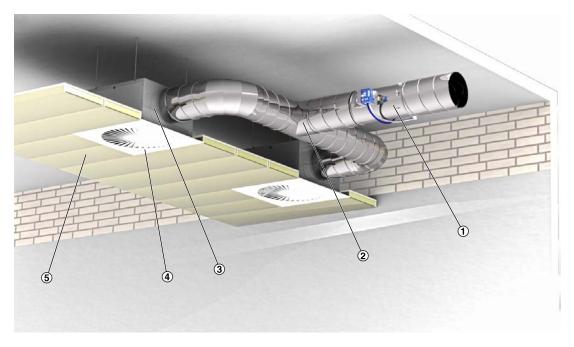
Messung Abstrahlgeräusch



- ① Hallraum
- 2 Regelgerät
- ③ Mikrofon (Erfassung Abstrahlgeräusch VVS-Regelgerät)
- 4 Ventilator
- Schalldämpfer
- 6 Luftleitung

Messung Strömungsgeräusch

- ① Hallraum
- ② Regelgerät
- ③ Mikrofon (Erfassung Strömungsgeräusch VVS-Regelgerät)
- 4 Ventilator
- ⑤ Schalldämpfer
- 6 Luftleitung



Akustische Schnellauslegung

Grundlagen zur Erläuterung

Die Tabellen in den Produktdatenblättern zur Schnellauslegung der Produkte zeigen die zu erwartenden Schalldruckpegel im Raum jeweils für das Strömungsgeräusch und das Abstrahlgeräusch. Der Schalldruckpegel im Raum resultiert aus der Schallleistung der Produkte – bei gegebenem Volumenstrom und gegebener Druckdifferenz – sowie der pegelmindernden Dämpfung und Dämmung durch die örtlichen Gegebenheiten.

Schallpegelsenkung für Strömungsgeräusch und Abstrahlung

- Regelgerät
- 2 Verteilung im Luftleitungssystem
- ③ Umlenkung
- 4 Mündungsreflexion
- ⑤ Deckendämmung (nur relevant für Abstrahlgeräusch)
- ® Raumdämpfung

Hinweis: Die Raumdämpfung ist abhängig von Raumgröße/Volumen und der Raumaustattung (Oberflächen, Böden, Wände, Decken)

Systemdämpfung

Unter Systemdämpfung sind alle pegelmindernden Einflüsse zu verstehen – einschließlich der "natürlichen" Dämpfung von Luftleitungsbauteilen und der Schallausbreitung in Räumen oder im Freien. In unseren Produktdatenblättern werden in den Tabellen der akustischen Schnellauslegung für die angegebenen Schalldruckpegel bereits praxisgerechte Dämpfungs- und Dämmungswerte als sogenannte Systemdämpfung berücksichtigt. Die Systemdämpfung für Strömungsgeräusche setzt sich zusammen aus der Verteilung im Luftleitungssystem, der Umlenkung, der Mündungsreflexion und der Raumdämpfung und beeinflusst somit den Schalldruckpegel des Strömungsgeräusches. Die Systemdämpfung für Abstrahlgeräusche setzt sich zusammen aus Deckendämmung und Raumdämpfung und beeinflusst damit den Schalldruckpegel des Abstrahlgeräusches.

Korrekturwerte zur akustischen Schnellauslegung

Die (Korrektur-) Tabellen beinhalten praxisgerechte Werte für die Einflussgrößen der möglichen Pegelsenkung:

- Beim Strömungsgeräusch relevant: raumlufttechnische Anlagenelemente, Mündungsreflexion und Raumdämpfung
- Beim Abstrahlgeräusch relevant: Deckendämmung und Raumdämpfung

Korrekturwerte für die Verteilung im Luftsystem

Die Korrektur für die Verteilung im Luftsystem berücksichtigt die Anzahl der Luftdurchlässe, die einem Volumenstromregler zugeordnet sind. Bei einem Luftdurchlass (Annahme 140 l/s oder 500 m³/h) erfolgt keine Korrektur. Bei höheren Volumenströmen werden typischerweise mehrere Luftdurchlässe verwendet, die zu einer zusätzlichen Reduzierung des Strömungsrauschens führen.

Berücksichtigte Minderung des Strömungsgeräusches durch Verteilung im Luftleitungssystem

Zusätzliche Pegelsenkung je Oktave

qv [m³/h]	500	1000	1500	2000	2500	3000	4000	5000
qv [l/s]	140	280	420	550	700	840	1100	1400
Anzahl Durchlässe	1	2	3	4	5	6	8	10
∆L [dB]	0	3	5	6	7	8	9	10

Berücksichtigte Minderung des Strömungsgeräusches durch Umlenkung, Mündungsreflexion, Raumdämpfung

Zusätzliche Pegelsenkung je Oktave nach VDI 2081

Mittenfrequenz fm [Hz]	63	125	250	500	1000	2000	4000	8000
Umlenkung ΔL [dB]	0	0	1	2	3	3	3	3
Mündungsreflexion ΔL [dB] *	10	5	2	0	0	0	0	0
Raumdämpfung ΔL [dB]	5	5	5	5	5	5	5	5

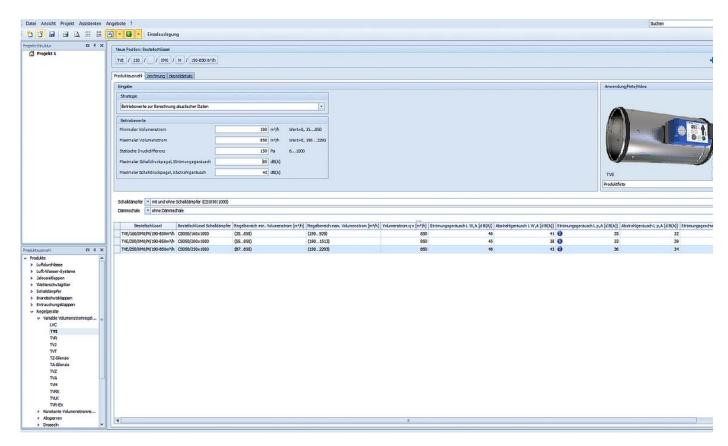
Eine Umlenkung ist in der Systemdämpfung berücksichtigt, die bei horizontaler Verzweigung durch den Anschlusskasten des Luftdurchlasses gegeben ist. Bei vertikalem Anschluss ist diese Dämpfung nicht wirksam. Zusätzliche Umlenkungen führen zu geringeren Schalldruckpegeln.

Berücksichtigte Minderung des Abstrahlgeräusches

Zusätzliche Deckendämmungs- und Raumdämpfungswerte je Oktave nach VDI 2081

Mittenfrequenz fm [Hz]	63	125	250	500	1000	2000	4000	8000
Deckendämmung ΔL [dB]	4	4	4	4	4	4	4	4
Raumdämpfung ΔL [dB]	5	5	5	5	5	5	5	5

Hinweis zu den Korrekturwerten für Deckendämmung und Raumdämpfung


Diese Korrekturwerte berücksichtigen die Ausführung/Ausstattung des betrachteten Raums. Je nach Ausführung (Teppiche, Parkett, Wandbeschaffenheit, Vorhänge etc.) können die realen Dämpfungswerte des Raums und seiner Einrichtung höher oder niedriger sein. Wir berücksichtigen in der akustischen Schnellauslegung einen mittleren (üblichen) Wert von 5 dB.

^{*} Berechnung basiert auf Annahme einer Mündungsreflexion für Nenngröße 250.

Easy Product Finder

Mit dem Easy Product Finder können Sie das Produkt mit Ihren projektspezifischen Daten dimensionieren. Es können Daten zu individuell wählbaren Betriebspunkten (z. B. Volumenströmen, Differenzdrücken und Akustik) berechnet werden.

Hier geht es zum Easy Product Finder:

www.trox.de/epf

