

TROX UNIVERSAL Regler, TROX LABCONTROL Regler

Universalregler (VARYCONTROL)

Variante mit Flansch

Einfache Reinigung der Sensorrohre

Variable Volumenstromregelung VVS-Regelgeräte

Für kontaminierte Luft

Runde Volumenstromregelgeräte aus Kunststoff für Abluftsysteme mit variablen Volumenströmen, die aggressive Medien abführen

- Gehäuse und Stellklappe aus schwer entflammbarem Polypropylen
- Wirkdrucksensor zu Reinigungszwecken einfach herausziehbar
- Geeignet für die Volumenstrom-, Raum- oder Kanaldruckregelung
- Elektronische Regelkomponenten für unterschiedliche Anwendungen (Universal und LABCONTROL)
- Geeignet für Luftgeschwindigkeiten bis 13 m/s
- Leckluftstrom bei geschlossener Regelklappe nach EN 1751, Klasse 3
- Gehäuse-Leckluftstrom nach EN 1751, Klasse B

Optionale Ausstattung und Zubehör

- Beidseitig mit Flansch
- Beidseitig mit Gegenflansch
- Rohrschalldämpfer aus Kunststoff Serie CAK zur Reduzierung von Strömungsgeräuschen

Produktdatenblatt

TVRK

Allgemeine Informationen	2	Legende	30
Funktion	3	Grundlagen und Definitionen	33
Technische Daten	4	Volumenstrom und Schnellauslegung	34
Schnellauslegung	4	Statische Mindest-Druckdifferenz Δpstmin [Pa]	34
Ausschreibungstext	8	Statische Mindest-Druckdifferenz Δpstmin [Pa]	34
Bestellschlüssel	9	Akustik	35
Varianten	18	Akustische Schnellauslegung	38
Abmessungen und Gewichte	20	Korrekturwerte zur akustischen Schnellauslegung	39
Produktdetails	27	Easy Product Finder	40

Allgemeine Informationen

Anwendung

- Runde VVS-Regelgeräte für den Einsatz in raumlufttechnischen Anlagen (RLT-Anlagen)
- VVS-Regelgeräte aus Kunststoff für kontanimierte Luft geeignet
- Für Regel-, Drossel- und Absperraufgaben vorzugsweise im Abluftbereich
- Volumenstromregelung im geschlossenen Regelkreis mit Hilfsenergie
- Für variable oder konstante Volumenstromsysteme
- Absperrung durch kundenseitige Zwangsschaltung
- Mit geeigneten Regelkomponenten auch zur Kanal- oder Raumdruckregelung einsetzbar

Besondere Merkmale

- Integrierter Wirkdrucksensor, zur Kontrolle herausziehbar, mit Messbohrungen 3 mm (unempfindlich gegen Verschmutzung)
- Werkseitige Einstellung oder Programmierung und lufttechnische Prüfung
- Einstellung und nachträgliche Parametrierung an der Regelkomponente möglich; je nach Regelkomponente wird eventuell ein separates Einstellgerät erforderlich

Nenngrößen

125, 160, 200, 250, 315, 400

Varianten

- TVRK: VVS-Regelgerät
- TVRK-FL: VVS-Regelgerät beidseitig mit Flansch

Bauteile und Eigenschaften

- Inbetriebnahmebereites Gerät, bestehend aus mechanischen Bauteilen und Regelkomponenten
- Mittelwert bildender Wirkdrucksensor zur Luftstrommessung, zu Reinigungszwecken herausziehbar
- Regelklappe
- Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet
- Jedes Gerät werkseitig auf speziellem lufttechnischen Prüfstand geprüft
- Dokumentation der Daten mit einer Prüfplakette
- Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D)

Anbauteile

- Universalregler: Regler, Wirkdrucktransmitter und Stellantriebe für spezielle Anwendungen
- LABCONTROL: Regelkomponenten für Luftmanagement-Systeme

Zubehör

· Beidseitig mit Gegenflansch und Dichtung

Ergänzende Produkte

 Rohrschalldämpfer aus Kunststoff Serie CAK für hohe akustische Anforderungen

Konstruktionsmerkmale

- Rundes Gehäuse
- Rohrstutzen passend für Luftleitungen nach DIN 8077
- Beidseitig gleicher Anschlussdurchmesser
- Position der Regelklappe von außen an der Achse erkennbar

Materialien und Oberflächen

- Gehäuse und Regelklappe aus schwer entflammbarem Polypropylen (PPs)
- Wirkdrucksensor und Gleitlager aus Polypropylen (PP)
- Regelklappendichtung aus Chloropren-Kautschuk (CR)
- Achse aus Edelstahl, Werkstoff-Nr. 14104

Normen und Richtlinien

Erfüllt die Hygieneanforderungen nach

- EN 16798, Teil 3
- VDI 6022, Blatt 1
- DIN 1946, Teil 4
- Weitere Normen, Richtlinien gemäß Hygienezertifikat

Gehäuse-Leckluftstrom

EN 1751, Klasse B

Leckluftstrom bei geschlossener Regelklappe

- EN 1751, Klasse 3
- DIN 1946 Teil 4, Erfüllung der allgemeinen Anforderungen an den zulässigen Leckluftstrom bei geschlossener Regelklappe

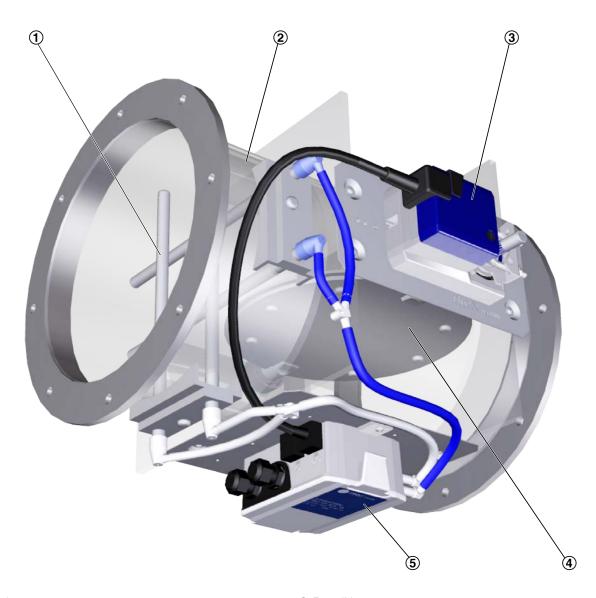
Instandhaltung

2/40

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
- Nullpunktabgleich des statischen Wirkdrucktransmitters bei einigen Regelkomponenten einmal j\u00e4hrlich empfohlen

PD-07/2021 - DE/de

Funktion


Zur Messung des Volumenstroms enthält das VVS-Regelgerät einen Wirkdrucksensor.

Die Regelkomponenten (Anbauteile) umfassen einen Wirkdrucktransmitter zur Umformung des Wirkdrucks in ein elektrisches Signal, einen Regler und einen Stellantrieb als Einzelkomponenten (Universal oder LABCONTROL).

Der Sollwert kommt in den meisten Anwendungsfällen von einem externen Sollwertgeber.

Der Regler vergleicht den Istwert mit dem Sollwert und verändert bei Abweichungen das Führungssignal des Stellantriebs.

Schematische Darstellung TVRK

- ① Wirkdrucksensor
- ② Gehäuse
- ③ Stellantrieb

- ④ Regelklappe
- ⑤ Regelkomponenten, z. B. Universalregler

Technische Daten

Nenngrößen	125 – 400 mm
Volumenstrombereich	20 – 1660 l/s oder 70 – 5978 m³/h
Volumenstromregelbereich	Ca. 12 – 100 % vom Nennvolumenstrom
Mindestdruckdifferenz	Bis zu 62 Pa (ohne Rohrschalldämpfer)
maximal zulässige Druckdifferenz	1000 Pa
Betriebstemperatur	10 – 50 °C

Schnellauslegung

Die Schnellauslegung gibt einen guten Überblick über die Mindestdruckdifferenzen, die Volumenstromgenauigkeit und die zu erwartenden Schalldruckpegel im Raum. Zwischen angegebenen Werten darf linear interpoliert werden.

Die Schallleistungspegel zur Berechnung der Schalldruckpegel wurden im TROX Labor nach DIN EN ISO 5135 gemessen – siehe hierzu "Grundlagen und Definitionen".

Zu exakten Ergebnissen und Spektraldaten für alle Regelkomponenten führt die Auslegung mit unserem Auslegungsprogramm Easy Product Finder. Die Auswahl der Nenngröße erfolgt zunächst nach den gegebenen Volumenströmen que und quant.

Volumenstrombereiche und Mindestdruckdifferenzen

Die Mindestdruckdifferenz der VVS-Regelgeräte ist eine wichtige Größe zur Planung des Luftleitungsnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten eine ausreichende Druckdifferenz über dem jeweiligen Regler (Δ_{pstat,min}) ansteht. Der Messpunkt oder die Messpunkte für die Drehzahlsteuerung des Ventilators sind dementsprechend auszuwählen. Die Volumenstrombereiche von VVS-Regelgeräten sind von der Nenngröße und von der verwendeten Regelkomponente (Anbauteil) abhängig.

Volumenstrombereiche und Mindestdruckdifferenzen

Regelkomponente statisches Messprinzip

Anbauteil: XD0, XD4, BP3, BPG, BPB, BB3, BBB, BUSN, BUSNF, BUSS, TUN, TUNF, TUS, TUSD, ELAB

NO	· F1/-3	F 3/I-1		Δpstm	in [Pa]		A [1 0/1
NG	qv [l/s]	qv [m³/h]	1	2	3	4	Δqv [±%]
125	20	70	2	2	2	2	10
125	59	213	10	12	13	15	7
125	99	356	28	32	36	40	6
125	138	499	54	62	70	77	6
160	34	122	2	2	2	2	10
160	104	373	12	13	14	15	7
160	174	625	32	35	38	42	6
160	243	876	62	68	75	81	5
200	55	196	2	2	2	2	10
200	167	601	11	12	12	13	7
200	279	1005	29	31	34	36	6
200	391	1410	56	61	66	71	5
250	85	306	1	1	2	2	10
250	261	939	9	10	10	11	7
250	437	1572	24	26	28	30	6
250	612	2205	47	51	55	59	5
315	139	500	1	1	1	1	10
315	426	1533	6	6	7	8	7
315	713	2565	16	17	19	21	6
315	999	3598	30	33	37	40	5

Produktdatenblatt

TVRK

	NG	eu . [1/e]	au . [ma 3/la]		Δpstm	in [Pa]		A en . [1 0/]
		qv [l/s]	qv [m³/h]	①	2	3	4	Δqv [±%]
	400	231	830	1	1	1	1	10
	400	707	2546	4	5	5	5	7
	400	1184	4262	11	12	13	14	6
	400	1660	5978	21	24	26	28	5

- ① Grundgerät
- ② Grundgerät mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 500 mm
- ③ Grundgerät mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 1000 mm
- ④ Grundgerät mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 1500 mm

Schnellauslegungstabelle Schalldruckpegel

In der Schnellauslegung sind praxisgerechte Dämpfungs- und Dämmungswerte (Systemdämpfung) in den Tabellen berücksichtigt. Liegt der Schalldruckpegel über dem zulässigen Wert, sind ein größeres Volumenstromregelgerät und/oder ein Schalldämpfer bzw. eine bauseitige Dämmschale erforderlich. Weitere Informationen zu den akustischen Daten sind den Grundlagen und Definitionen zu entnehmen.

Schnellauslegungstabelle Strömungsgeräusch LPA

Regler inklusive Schalldämpfervarianten (Gesamter Volumenstrombereich der Serie)

NC	ev [1/e]	eu ([m3/h]		150 Pa			500	Pa		
NG	qv [l/s]	qv [m³/h]	1	2	3	4	1	2	3	4
125	20	70	35	20	< 15	< 15	41	24	18	< 15
125	59	213	46	32	27	22	52	37	31	26
125	99	356	51	38	33	29	57	43	37	32
125	138	499	54	42	37	33	60	47	41	37
160	34	122	36	23	18	15	42	27	22	17
160	104	373	47	35	30	27	53	40	34	29
160	174	625	51	39	35	31	57	44	39	34
160	243	876	53	41	37	34	58	47	41	37
200	55	196	41	28	23	19	51	40	35	30
200	167	601	44	32	27	23	55	43	38	34
200	279	1005	44	32	27	24	55	43	38	34
200	391	1410	44	32	29	28	55	43	38	34
250	85	306	41	29	23	18	52	40	34	29
250	261	939	44	33	28	24	55	44	39	34
250	437	1572	44	35	30	26	55	45	40	36
250	612	2205	44	36	32	29	55	45	41	37
315	139	500	43	33	28	24	49	38	33	29
315	426	1533	47	39	34	31	53	44	40	36
315	713	2565	50	42	37	34	56	47	43	40
315	999	3598	51	43	39	36	57	49	45	42
400	231	830	40	32	28	25	46	39	35	31
400	707	2546	45	38	35	32	52	45	41	38
400	1184	4262	48	41	38	35	54	48	44	41
400	1660	5978	49	43	40	37	56	49	46	43

Strömungsgeräusch $L_{\text{\tiny PA}}$ [dB] bei statischer Druckdifferenz $\Delta_{\text{\tiny pst}}$ von 150 bzw. 500 Pa

- ① Grundgerät
- ② Grundgerät mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 500 mm
- 3 Grundgerät mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 1000 mm
- ④ Grundgerät mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 1500 mm
- n. V.: Angegebene statische Druckdifferenz Δ_{pst} ist kleiner als Mindestdruckdifferenz $\Delta_{\text{pst min}}$.

PD-07/2021 - DE/de

Schnellauslegungstabelle Abstrahlgeräusch $L_{\tiny PA}$

NG	qv [l/s]	qv [m³/h]	150 Pa	500 Pa
125	20	70	18	30
125	59	213	26	38
125	99	356	29	41
125	138	499	32	44
160	34	122	19	30
160	104	373	29	40
160	174	625	34	44
160	243	876	37	47
200	55	196	30	41
200	167	601	33	45
200	279	1005	35	46
200	391	1410	36	47
250	85	306	28	40
250	261	939	33	45
250	437	1572	36	48
250	612	2205	37	49
315	139	500	31	40
315	426	1533	39	48
315	713	2565	43	51
315	999	3598	45	54
400	231	830	28	36
400	707	2546	38	46
400	1184	4262	42	51
400	1660	5978	45	54

Abstrahlgeräusch $L_{_{PA}}$ [dB] bei statischer Druckdifferenz $\Delta_{_{pst}}$ von 150 bzw. 500 Pa

Hinweis:

Angaben zum Abstrahlgeräusch für Kombinationen aus Grundgerät und Zusatzschalldämpfer können mit dem Auslegungsprogramm Easy Product Finder ermittelt werden.

n. V.: Angegebene statische Druckdifferenz Δ_{pst} ist kleiner als Mindestdruckdifferenz $\Delta_{\text{pst min}}$.

Ausschreibungstext

Dieser Ausschreibungstext beschreibt eine Produktvariante, passend für viele Anwendungen. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Ausschreibungstext

VVS-Regelgeräte aus Kunststoff PPs in runder Bauform für variable und konstante Volumenstromsysteme, für Abluft, in 6 Nenngrößen.

Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D).

Inbetriebnahmebereites Gerät, bestehend aus den mechanischen Bauteilen und den elektronischen Regelkomponenten. Geräte enthalten einen Mittelwert bildenden Wirkdrucksensor zur Volumenstrommessung und eine

Regelklappe. Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet.

Wirkdrucksensor mit Messbohrungen 3 mm, dadurch unempfindlich gegen Verschmutzung.

Position der Regelklappe von außen an der Achse erkennbar. Regelklappe bei Auslieferung geöffnet, dadurch Luftströmung auch ohne Regelfunktion gegeben; ausgenommen Varianten mit definierter Sicherheitstellung NC (Normally Closed). Leckluftstrom bei geschlossener Regelklappe nach EN 1751,

Gehäuse-Leckluftstrom nach EN 1751, Klasse B. Erfüllt die Hygieneanforderungen nach EN 16798 Teil 3, VDI 6022 Blatt 1, DIN 1946 Teil 4.

Besondere Merkmale

Klasse 3.

- Integrierter Wirkdrucksensor, zur Kontrolle herausziehbar, mit Messbohrungen 3 mm (unempfindlich gegen Verschmutzung)
- Werkseitige Einstellung oder Programmierung und lufttechnische Prüfung
- Einstellung und nachträgliche Parametrierung an der Regelkomponente möglich; je nach Regelkomponente wird eventuell ein separates Einstellgerät erforderlich

Materialien und Oberflächen

- Gehäuse und Regelklappe aus schwer entflammbarem Polypropylen (PPs)
- Differenzdrucksensor und Gleitlager aus Polypropylen (PP)
- Regelklappendichtung aus Chloropren-Kautschuk (CR)

Anschlussausführung

Rohrstutzen, passend f
ür Luftleitungen nach DIN 8077

Technische Daten

- Nenngrößen: 125 400 mm
- Volumenstrombereich: 20 1666 l/s oder 70 5978 m³/h
- Volumenstromregelbereich: ca. 12 100 % vom Nennvolumenstrom
- Mindestdruckdifferenz: bis zu 62 Pa
- Maximal zulässige Druckdifferenz: 1000 Pa

Ausschreibungstext Anbauteil

Variable Volumenstromregelung mit elektronischem Universalregler zur Aufschaltung einer Führungsgröße und einem Istwertsignal zur Einbindung in Gebäudeleittechnik.

[m³/h]

- Versorgungsspannung 24 V AC/DC
- Signalspannungen 0 10 V DC oder 2 10 V DC
- Mit externen, potentialfreien Schaltern; mögliche Zwangssteuerungen: ZU, AUF, q_{,min} und q_{,max}

Auslegungsdaten


17	
■ Δ _{pst}	_ [Pa]
Strömungsgeräusch	
• L _{PA}	_[dB(A)]
Abstrahlgeräusch	
• L _{PA}	_[dB(A)]

Bestellschlüssel

Bestellschlüssel Volumenstromregelung (mit Anbauteil VARYCONTROL)

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL Flansch beidseitig

3 Nenngröße [mm]

125

160 200

250

315

400

4 Zubehör

Keine Eintragung: ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

Zum Beispiel

XD4 Universalregler (VARYCONTROL) mit statischem

Wirkdrucktransmitter

Bestellbeispiel: TVRK/160/XD4/V2/200-900 m³/h/NO

Luftleitungsanschluss	Rohrstutzen
Nenngröße	160 mm
Anbauteile (Regelkomponente)	VARYCONTROL Universalregler mit statischem Wirkdrucktransmitter
induterie (regenomponente)	und Sicherheitsstellung mit Federrücklaufantrieb
Betriebsart	variabler Betrieb
Signalspannungsbereich	2 – 10 V DC
Betriebswerte	$q_{vmin} = 200 \text{ m}^3/\text{h}$
TiedSwerte	$q_{\text{vmax}} = 900 \text{ m}^3/\text{h}$
Klappenstellung	NO stromlos geöffnet

7 Betriebsart

F Festwert (ein Sollwert) V variabel (Sollwertbereich)

8 Signalspannungsbereich

Für das Istwert- und Sollwertsignal

0 0 – 10 V DC

2 2 - 10 V DC

9 Betriebswerte zur werkseitigen Einstellung

Volumenströme [m³/h oder l/s] q_{vkonst.} (bei Betriebsart F) $q_{vmin} - q_{vmax}$ (bei Betriebsart V)

10 Klappenstellung

Nur Federrücklaufantriebe

NO stromlos AUF

NC stromlos ZU

Bestellschlüssel Volumenstromregelung (mit Anbauteil TROX UNIVERSAL)

TVRK - FL / 160 / GK / TUNF / RE / M / 0 / UMZ / ... / NC 10

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne

GK Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

TROX UNIVERSAL Regler Varianten:

TUN Stellantrieb (150 s)

TUNF Federrücklaufantrieb (150 s)

TUS Schnellläufer (3 s)

TUSD Schnellläufer (3 s), mit digitaler

Kommunikationsschnittstelle (TROX HPD)

6 Gerätefunktion

Raumregelung

RE Abluftregelung (Room Extract)

7 Volumenstromvorgabe

M Master (RMF Funktion)

S Slave

Flansch

F Festwertregler

8 Signalspannungsbereich

0 0 - 10 V DC

2 2 - 10 V DC

9 Erweiterung der Anbauteile

Bestellbeispiel: TVRK-FL/125/TUN/RE/S/0/UZ/

Nenngröße Zubehör Anbauteile (Regelkomponente) Gerätefunktion Volumenstromvorgabe

Signalspannungsbereich

Erweiterung der Anbauteile

Betriebswerte

Option 1: Stromversorgung Keine Eintragung: 24 V AC/DC

TEM-TRF für 230 VAC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne

B EM-BAC-MOD-01 für BACnet MS/TP M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: automatischer Nullpunktabgleich

Keine Eintragung: ohne

Z EM-AUTOZERO mit Magnetventil

10 Betriebswerte [m³/h oder l/s]

Master

q_{min}: minimaler Volumenstrom

q_{vmax}: maximaler Volumenstrom

q_{vkonst_Zu}: konstante Zuluft q konst Ab: konstante Abluft q.Diff: Differenz Zuluft-Abluft

Festwert

q.konst: Konstantvolumenstrom

Slave

Keine Eintragung notwendig

11 Klappenstellung

Nur bei Regelkomponente TUNF (Federrücklaufantrieb)

NO stromlos AUF NC stromlos ZU

Ergänzende Produkte

Raumbedieneinheit

beidseitig

BE-LCD 40-Zeichen-Display

125 mm Regler TROX UNIVERSAL, Stellantrieb Laufzeit 150 s Abluftregelung Slave 0 - 10 V DCmit Erweiterungsmodul EM-TRF-USV, Trafo für 230 V AC und unterbrechungsfreie Stromversorgung mit Erweiterunsgmodul EM-AUTOZERO,

Magnetventil für automatischen Nullpunktabgleich der Messstelle

keine Eintragung erforderlich (Slave)

Bestellschlüssel Druckregelung (mit Anbauteil VARYCONTROL)

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne

GK Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

Zum Beispiel

XF0 Compactregler Kanaldruck

XF4 Universalregler Kanaldruck (VARYCONTROL)

6 Gerätefunktion/Einbauort

Bestellbeispiel: TVRK/315/XF0/PDE/F0/550 Pa

Luftleitungsanschluss

Nenngröße

Anbauteile (Regelkomponente)

Gerätefunktion/Einbauort

Betriebsart

Signalspannungsbereich

Betriebswert

PDS Kanaldruckregelung Zuluft

PDE Kanaldruckregelung Abluft

PRS Raumdruckregelung Zuluft

PRE Raumdruckregelung Abluft

7 Betriebsart

F Festwert (ein Sollwert)

V variabel (Sollwertbereich)

8 Signalspannungsbereich

Für das Istwert- und Sollwertsignal

0 0 – 10 V DC

22 - 10 V DC

9 Betriebswerte zur werkseitigen Einstellung

Bei Kanaldruckregelung Differenzdruck [Pa] immer als

Absolutwert ohne Vorzeichen.

 Δ_{pkonst} (bei Betriebsart F)

 Δ_{pmin} - Δp_{max} (bei Betriebsart V)

10 Klappenstellung

Nur Federrücklaufantriebe

NO stromlos AUF

NC stromlos ZU

Rohrstutzen

315 mm

Compactregler, statisch, Kanaldruckregelung

Kanaldruckregelung Abluft

Festwertregelung

0 – 10 V DC

 $\Delta_{\text{pkonst.}}$ = 550 Pa

Bestellschlüssel Druckregelung (mit Anbauteil TROX UNIVERSAL)

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

TROX UNIVERSAL Regler Varianten:

TUN Stellantrieb (150 s)

TUNF Federrücklaufantrieb (150 s)

TUS Schnellläufer (3 s)

TUSD Schnellläufer (3 s), mit digitaler

Kommunikationsschnittstelle (TROX HPD)

6 Gerätefunktion

Druckregelung

PRE Raumdruckregelung Abluft

PDE Kanaldruckregelung Abluft

7 Wirkdruckvorgabe

MFP Master, Konstantdruckregelung

MVP Master, variable Druckregelung

SFP Slave, Konstantdruckregelung

SVP Slave, variable Druckregelung

8 Signalspannungsbereich

0 0 - 10 V DC

2 2 - 10 V DC

9 Erweiterung der Anbauteile

Option 1: Stromversorgung

Keine Eintragung: 24 V AC/DC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: digitale Kommunikationsschnittstelle

Keine Eintragung: ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Volumenstrommessung

Keine Eintragung: ohne

V EM-V Volumenstrommessung für Druckregelung

Option 4: automatischer Nullpunktabgleich

Keine Eintragung: ohne

Z EM-AUTOZERO mit Magnetventil (nur mit V)

10 Betriebswerte [Pa, m³/h oder l/s]

Slave SVP

 Δ_{pmin} : Minimaler Differenzdruck

Δ_{pmax}: Maximaler Differenzdruck

Slave SFP

 Δ_{pkonst} : Konstanter Differenzdruck

Master MFP und MVP – wie Slave, jedoch zusätzlich:

q_{min}: minimaler Volumenstrom

q_{max}: maximaler Volumenstrom

 $q_{v_{konst_Zu}}$: konstante Zuluft

qvkonst Ab: konstante Abluft

 $q_{v_{\text{Diff}}}$: Differenz Zuluft-Abluft

11 Klappenstellung

Nur bei Regelkomponente TUNF (Federrücklaufantrieb)

NO stromlos AUF

NC stromlos ZU

Ergänzende Produkte

Raumbedieneinheit

BE-LCD 40-Zeichen-Display

Differenzdrucktransmitter für Raum- oder Kanaldruckregelung gesondert bestellen, z. B.:

PT-699 für Raumdruckregelung

PT-699-DUCT für Kanaldruckregelung, inklusive Schlauch und Messnippel

Bestellbeispiel: TVRK/125/TUN/PDE/SVP/0/TVZ/100/350 Pa

Luftleitungsanschluss	Rohrstutzen
Nenngröße	125 mm
Anbauteile (Regelkomponente)	TROX UNIVERSAL Regler, Stellantrieb 150 s Laufzeit
Gerätefunktion	Kanaldruckregelung Abluft
Wirkdruckvorgabe	Slave, variable Druckregelung
Signalspannungskennlinie	0 – 10 V DC
Erweiterung des Anbauteils	mit Erweiterungsmodul EM-TRF, Trafo für 230 V AC Versorgung mit Erweiterungsmodul EM-V, für Volumenstrommessung bei Druckregelung mit Erweiterungsmodul EM-AUTOZERO, Magnetventil für automatischen Nullpunktabgleich der Messstelle
Betriebswerte	Δ_{pmin} = 100 Pa Δ_{nmax} = 350 Pa

13 / 40 PD-07/2021 - DE/de

Bestellschlüssel Raumregelung (mit Anbauteil EASYLAB)

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: Ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

6 Antriebe

S Schnellläufer (3 s)

SD Schnellläufer (3 s), mit digitaler Kommunikationsschnittstelle (TROX HPD)

8 Gerätefunktion

Raumregelung

RE Abluftregelung (Room Exhaust)

PC Druckregelung (Pressure Control)

9 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung Keine Eintragung: 24 V AC/DC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: Digitale Kommunikationsschnittstelle

Bestellbeispiel: TVRK-FL/160/GK/ELAB/S/RE/LAB

Luftleitungsanschluss Nenngröße Zubehör

Anbauteile (Regelkomponente)
Antrieb

Gerätefunktion

Betriebswerte

Keine Eintragung: Ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich

Keine Eintragung: Ohne

Z EM-AUTOZERO Magnetventil für automatischen

Nullpunktabgleich

10 Zusatzfunktionen

Ohne Raum-Management-Funktion

LAB Abluftgeführtes System (Laboratorien)

CLR Zuluftgeführtes System (Reinräume)

Raum-Management-Funktion aktiviert

LAB-RMF Abluftgeführtes System

CLR-RMF Zuluftgeführtes System

11 Betriebswerte [m³/h oder l/s, Pa]

(nur bei aktivierter Raum-Management-Funktion erforderlich)

Gesamtabluft/-zuluft Raum:

q_{v1}: Standardbetrieb

q_{v2}: Reduzierter Betrieb

q_{√3}: Erhöhter Betrieb

q_{v4}: Konstante Zuluft q_{v5}: Konstante Abluft

q_{v6}: Differenz Zu-/Abluft

 $\Delta_{\text{\tiny psoll}}$: Solldruck (nur bei Druckregelung)

Ergänzende Produkte

Raumbedieneinheit

BE-LCD 40-Zeichen-Display

Differenzdrucktransmitter bei Gerätefunktion

Raumdruckregelung gesondert bestellen, z. B.

PT-699 Messbereich ±50 Pa oder ±100 Pa

PT-GB604 Messbereich ±100 Pa

Flansch beidseitig

160 mm

Gegenflansch beidseitig

EASYLAB Regler TCU3 Schnelllaufend (3 s)

Abluftregelung

Raum-Management-Funktion deaktiviert

abluftgeführtes System

nicht erforderlich

Bestellschlüssel Einzelregelung (mit Anbauteil EASYLAB)

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: Ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

6 Antriebe

S Schnellläufer (3 s)

 ${f SD}$ Schnellläufer (3 s), mit digitaler Kommunikationsschnittstelle

(TROX HPD)

7 Gerätefunktion

Einzelregelung

EC Abluftregler

8 Externe Volumenstromvorgabe

E0 Spannungssignal 0 - 10 V DC

Bestellbeispiel: TVRK/200/ELAB/S/EC/E2/600/900

Luftleitungsanschluss Nenngröße

Anbauteile (Regelkomponente)

Annauteile (Regelkomponente

Gerätefunktion

Externe Volumenstromvorgabe

Betriebswerte

E2 Spannungssignal 2 – 10 V DC

2P Kundenseitige Schaltkontakte für 2 Schaltstufen

3P Kundenseitige Schaltkontakte für 3 Schaltstufen

F Volumenstrom Festwert, ohne Aufschaltung

9 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung

Keine Eintragung: 24 V AC/DC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: Digitale Kommunikationsschnittstelle

Keine Eintragung: Ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich

Keine Eintragung: Ohne

Z EM-AUTOZERO Magnetventil für automatischen

Nullpunktabgleich

10 Betriebswerte [m³/h oder l/s]

Je nach externer Volumenstromvorgabe

E0, E2: q_{vmin}/q_{vmax}

2P: q_{v1}/q_{v2}

 $3P: q_{v1}/q_{v2}/q_{v3}$

 $F \colon q_{\text{\tiny vkonst.}}$

Rohrstutzen

200 mm

EASYLAB Regler TCU3

Schnellläufer (3 s)

Abluftregler

Spannungssignal 2 - 10 V DC

 $q_{vmin} = 600 \text{ m}^3/\text{h}$

 $q_{vmax} = 900 \text{ m}^3/\text{h}$

Bestellschlüssel Laborabzugsregelung (mit Anbauteil EASYLAB)

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Luftleitungsanschluss

Keine Eintragung: Rohrstutzen

FL Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: Ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

6 Antriebe

S Schnellläufer (3 s)

SD Schnellläufer (3 s), mit digitaler Kommunikationsschnittstelle (TROX HPD)

7 Gerätefunktion

Laborabzugsregelung

Mit Einströmsensor

FH-VS Regelstrategie Einströmgeschwindigkeit

Mit Einströmsensor und Frontschieber-Wegsensor

FH-VD Regelstrategie Einströmgeschwindigkeit optimiert

Mit Frontschieber-Wegsensor

FH-DS Lineare Regelstrategie

FH-DV Sicherheitsoptimierte Regelstrategie

Mit Kundenseitigen Schaltkontakten für Schaltstufen

FH-2P 2 Schaltstufen

FH-3P 3 Schaltstufen

Ohne Aufschaltung

FH-F Regelung Volumenstromfestwert

8 Erweiterungsmodule

Option 1: Versorgungsspannung Keine Eintragung: 24 V AC/DC

TEM-TRF für 230 VAC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie

Stromversorgung

Option 2: Digitale Kommunikationsschnittstelle

Keine Eintragung: Ohne

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich

Keine Eintragung: Ohne

Z EM-AUTOZERO Magnetventil für automatischen

Nullpunktabgleich

Option 4: Beleuchtungsschaltung

Keine eintragung: Ohne

S EM-LIGHT Anschlussbuchse für die Beleuchtung, schaltbar an

der Bedieneinheit

(nur in Kombination mit EM-TRF oder EM-TRF-USV)

9 Betriebswerte [m³/h oder l/s]

Abhängig von der Gerätefunktion

FH-VS: $q_{vmin} - q_{vmax}$

FH-VD: q_{vmin} - q_{vmax}

 $FH\text{-}DS\text{: }q_{vmin}-q_{vmax}$

FH-DV: $q_{vmin} - q_{vmax}$

TITEV. Mymin Mymi

FH-2P: q_{v1}/q_{v2}

FH-3P: q_{v1}/q_{v2} /q_{v3}

FH-F: q_{v1}

Ergänzende Produkte

Bedieneinheit für Laborabzugsregler zur Funktionsanzeige

der Regelung nach EN 14175

BE-SEG-** OLED-Display

BE-LCD 40-Zeichen-Display

Produktdatenblatt

TVRK

Bestellbeispiel: TVRK/200/ELAB/S/FH-2P/TZ/600/1200

Luftleitungsanschluss	Rohrstutzen
Nenngröße	200 mm
Anbauteile (Regelkomponente)	EASYLAB Regler TCU3 mit Schnellläufer
Stellantrieb	Schnellläufer (3 s)
Gerätefunktion	2 Schaltstufen
Erweiterungsmodul	mit Erweiterungsmodul EM-TRF, Trafo für 230 V AC Versorgung mit Erweiterungsmodul EM-AUTOZERO, Magnetventil für automatischen Nullpunktabgleich

 $\begin{array}{ll} \textbf{Betriebswerte} & q_{vmin} = 600 \text{ m}^3 \text{/h} \\ q_{vmax} = 1200 \text{ m}^3 \text{/h} \end{array}$

17 / 40

Varianten

VVS-Regelgerät Variante TVRK

- Volumenstromregelgerät zur variablen Volumenstromregelung
- Rohrstutzen zum Anschluss der Luftleitungen

VVS-Regelgeräte Variante TVRK-FL

- Volumenstromregelgerät zur variablen Volumenstromregelung
- Flansche zum lösbaren Anschluss der Luftleitungen

Materialien

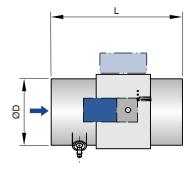
Ausführung Standard

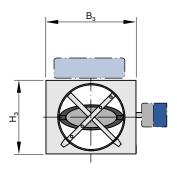
Bestellschlüsseldetail	Bauteil	Material
	Gehäuse	
	Wirkdrucksensor	Kunststoff, Polypropylen (PPs), schwer entflammbar
	Regelklappe	
_	Regelklappendichtung	Chloropren-Kautschuk (CR)
	Achse	Edelstahl, Werkstoff-Nr. 1.4104
	Gleitlager	Kunststoff, Polypropylen (PPs), schwer entflammbar

Option Flansch

Bestellschlüsseldetail	Bauteil	Material
FL	Flansch	Kunststoff, Polypropylen (PPs), schwer entflammbar

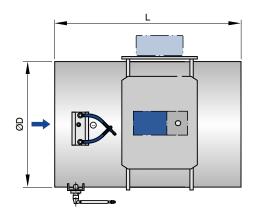
Option Gegenflansch

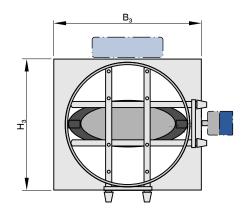

Bestellschlüsseldetail	Bauteil	Material
014	Gegenflansch	Kunststoff, Polypropylen (PPs), schwer entflammbar
GK	Dichtung	Gummi, EPDM



Abmessungen und Gewichte

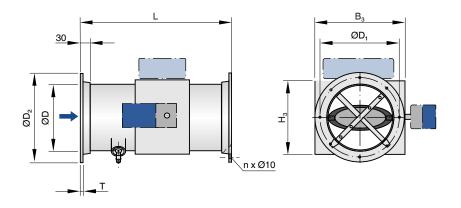
Regelgerät (TVRK, Nenngrößen 125 – 200)...




Hinweise: Baulänge L abhängig von Nenngröße. Abgebildet ist eine der möglichen Regelkomponenten. Individuelle Abmessungen siehe Abschnitt Platzbedarf für Inbetriebnahme und Instandhaltung.

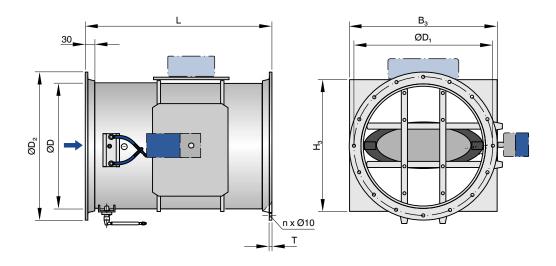
Regelgerät (TVRK, Nenngrößen 250 – 400)...

Hinweise: Baulänge L abhängig von Nenngröße. Abgebildet ist eine der möglichen Regelkomponenten. Individuelle Abmessungen siehe Abschnitt Platzbedarf für Inbetriebnahme und Instandhaltung.


Abmessungen und Gewichte für TVRK

, tomooodingon and t	DOTTIONICO ICAN I TITAL				
NG	L	ØD	В,	Н,	kg
125	394	125	195	145	4,5
160	394	160	230	180	4,8
200	394	200	270	220	5,2
250	394	250	320	270	6,4
315	594	315	385	335	8,5
400	594	400	470	420	10,7

Regelgerät mit Flansch (TVRK-FL, Nenngrößen 125 – 200)...


Hinweise:

Baulänge L abhängig von Nenngröße. Abgebildet ist eine der möglichen Regelkomponenten. Individuelle Abmessungen siehe Abschnitt Platzbedarf für Inbetriebnahme und Instandhaltung.

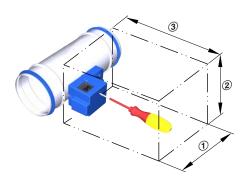
Regelgerät mit Flansch (TVRK-FL, Nenngrößen 250 – 400)...

Hinweis:

Baulänge L abhängig von Nenngröße. Abgebildet ist eine der möglichen Regelkomponenten. Individuelle Abmessungen siehe Abschnitt Platzbedarf für Inbetriebnahme und Instandhaltung.

Abmessungen und Gewichte für TVRK-FL

	binessurigen und Gewichte für TVTA-L								
NG	L	ØD	ØD,	ØD,	В,	Н,	Т	n	kg
125	400	125	165	185	195	145	8	8	4,7
160	400	160	200	230	230	180	8	8	5,2
200	400	200	240	270	270	270	8	8	5,7
250	400	250	290	320	320	270	8	12	7
315	600	315	350	395	385	335	10	12	9,4
400	600	400	445	475	470	420	10	16	11,9


Platzbedarf für Inbetriebnahme und Instandhaltung

Um die Arbeiten zur Inbetriebnahme und Instandhaltung zu ermöglichen, sollte ausreichenden Bauraum im Bereich der Anbauteile freigehalten werden. Gegebenenfalls sind Revisionsöffnungen in ausreichender Größe erforderlich, so dass die Anbauteile leicht zugänglich sind.

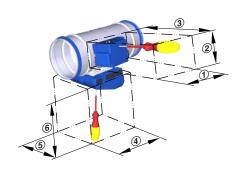
Die gewählten Produktdarstellungen geben keinen Hinweis auf mögliche Einbausituationen.

Einige Anbauteile erfordern eine bestimmte Einbaulage, die auf einem Einbaulagenaufkleber am Produkt gekennzeichnet ist.

Zugänglichkeit der Anbauteile

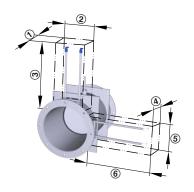
XD0, XD4

Schematische Darstellung erforderlicher Bauräume


Platzbedarf bei einseitigem Anbau

Anbauteil	①	2	3
VARYCONTROL			
Universalregler: BP3, BPB, BPG, BB3, BBB, BR3, BRB, BRG, BS3, BSB, BSG, BG3, BGB, BH3, BHB, XB0, XF0, XD4, XF4	300	320	300

Zugänglichkeit der Anbauteile, zweiseitig angebaut


TUS, BUDN

Schematische Darstellung erforderlicher Bauräume

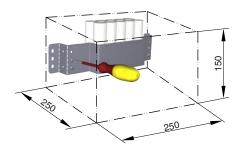
Platzbedarf bei zweiseitigem Anbau

	Izbedali bel zwelsettigetti Alibad									
Anbauteil	0	2	3	4	(5)	6				
LABCONTROL										
EASYLAB: ELAB	300	250	300	350	350	400				
TROX UNIVERSAL										
TUN, TUNF, TUS, TUSD	300	250	300	350	350	400				
VARYCONTROL										
BUSN, BUSNF, BUSS, BUPN, BUPNF, BURN, BURNF	300	320	300	250	250	250				

Zugänglichkeit der Sensorrohre zur Reinigung

Platzbedarf zur Reinigung der Sensorrohre

Nenngröße	1	2	3	4	⑤	6
125 – 200	100	100	D			
250 – 400	100	160	D	100	160	D


D: Gehäusedurchmesser

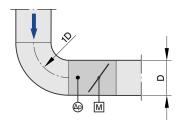
PD-07/2021 - DE/de

Zugänglichkeit des Notstromakkumulators

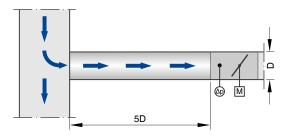
Schematische Darstellung erforderlicher Bauräume

Hinweis: Separater Bauraum für Befestigung und Zugänglichkeit des Notstromakkumulators (optionales Zubehör bei Regelkomponenten TROX UNIVERSAL oder LABCONTROL EASYLAB).

Produktdetails


Einbau und Inbetriebnahme

Einbaulage gemäß Geräteaufkleber beachten


Anströmbedingungen

Die Volumenstromgenauigkeit Δq_z gilt für gerade Anströmung. Formstücke wie Bögen, Abzweige oder Querschnittsveränderungen verursachen Turbulenzen, die die Messung beeinflussen können. Bei Ausführung von Luftleitungsanschlüssen, wie z. B. dem Abzweig von einer Hauptleitung, ist die EN 1505 zu beachten. Für manche Einbausituationen sind gerade Anströmlängen erforderlich.

Bogenanschluss

Abzweig von einer Hauptleitung

Ein Bogen mit mindestens 1D Krümmungsradius – ohne zusätzliche gerade Anströmlänge vor dem VVS-Regelgerät – hat keinen nennenswerten Einfluss auf die Volumenstromgenauigkeit.

Das Abzweigen einer Strömung von einer Hauptleitung verursacht starke Turbulenzen. Die angegebene Volumenstromgenauigkeit Δ_{qv} ist nur mit mindestens 5D gerader Anströmlänge zu erreichen.

Regelkomponenten VARYCONTROL

		YCONTROL	-	24 11 44 1	
Anbauteil	Regelgröße	Schnittstelle	Drucktransmitter	Stellantrieb	Fabrikat
			mpactregler – statisch		
XD0	qv	0 – 10 V oder 2 – 10 V	integriert	langsamlaufend, integriert	3
XF0	Δр	0 – 10 V oder 2 – 10 V	integriert, Regelbereich einstellbar 25 – 550 Pa	langsamlaufend, integriert	3
		VARYCON ⁻	TROL Universalregler – statisc	h	
BP3 *	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente	langsamlaufend, separat	2
BPB *	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente	Federrücklaufantrieb, separat	2
BPG *	qv	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente	schnelllaufend, separat	2
BB3 *	qv	2 – 10 V	Einzelkomponente	langsamlaufend, separat	2
BBB *	qv	2 – 10 V	Einzelkomponente	Federrücklaufantrieb, separat	2
BR3 *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 100 Pa	langsamlaufend, separat	2
BRB *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 100 Pa	Federrücklaufantrieb, separat	2
BRG *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 100 Pa	schnelllaufend, separat	2
BS3 *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 600 Pa	langsamlaufend, separat	2
BSB *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 600 Pa	Federrücklaufantrieb, separat	2
BSG *	Δρ	0 – 10 V oder 2 – 10 V oder MP-Bus-Schnittstellle	Einzelkomponente, 600 Pa	schnelllaufend, separat	2
BG3 *	Δρ	2 – 10 V	Einzelkomponente, 100 Pa	langsamlaufend, separat	2
BGB *	Δρ	2 – 10 V	Einzelkomponente, 100 Pa	Federrücklaufantrieb, separat	2
BH3 *	Δρ	2 – 10 V	Einzelkomponente, 600 Pa	langsamlaufend, separat	2
BHB *	Δρ	2 – 10 V	Einzelkomponente, 600 Pa	Federrücklaufantrieb, separat	2
XD4	qv	0 – 10 V oder 2 – 10 V	integriert	Federrücklaufantrieb, separat	3
XF4	Δρ	0 – 10 V oder 2 – 10 V	integriert, Regelbereich einstellbar 25 – 550 Pa	Federrücklaufantrieb, separat	3
BUSN	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	langsamlaufend, separat	2
BUSS	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	schnelllaufend, separat	2
BUSNF	qv	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert	Federrücklaufantrieb, separat	2
BUPN	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar 25 – 450 Pa	langsamlaufend, separat	2
BUPNF	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar 25 – 450 Pa	Federrücklaufantrieb, separat	2
BURN	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich einstellbar -5010 Pa oder 10 50 Pa	langsamlaufend, separat	2
BURNF	Δр	0 – 10 V oder 2 – 10 V oder MP-Bus oder Modbus RTU oder BACnet MS/TP	integriert, Regelbereich	Federrücklaufantrieb, separat	2

 q_{ν} Volumenstrom

^{*} Regelkomponente bereits ausgelaufen.

 $[\]Delta_{\!\scriptscriptstyle p}$ Druckdifferenz

① TROX, ② TROX/Belimo, ③ TROX/Gruner

Regelkomponenten TROX UNIVERSAL

Anbauteil	Regelgröße	Schnittstelle	Drucktransmitter	Stellantrieb	Fabrikat
		VARYCON	ΓROL Universalregler – statisc	h	
TUN	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver	qv = integriert, Δp = separat	langsamlaufend, separat	•
TUNF	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver		Federrücklaufantrieb, separat	①
TUS	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver	qv = integriert, Δp = separat	schnelllaufend, separat	①
TUSD	qv, Δp	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus BACnet, Webserver	qv = integriert, Δp = separat	schnelllaufend mit digitaler Kommunikationsschnittstelle (TROX HPD), separat	①

q_v Volumenstrom

Regelkomponenten LABCONTROL EASYLAB

Anbauteil	Regelgröße	Schnittstelle	Drucktransmitter	Stellantrieb	Fabrikat					
EASYLAB										
ELAB	qv, Δp *	TROX Plug&Play Kommunikationssystem und 0 – 10 V oder 2 – 10 V oder mit optionalem Zubehör: Modbus, BACnet, Webserver	qv = integriert, Δp = separat	schnelllaufend, separat oder schnelllaufend mit digitaler Kommunikationsschnittstelle (TROX HPD), separat	3					

① TROX

* Regelgröße abhängig von der VVS-Regelgeräte Serie

- TVR, TVRK: Laborabzug, Raumzuluft, Raumabluft, Raumdruck, Einzelregler
- TVLK: Laborabzug, Einzelregler
- TVJ, TVT: Raumzuluft, Raumabluft, Raumdruck, Einzelregler
- TVZ, TZ-Silenzio: Raumzuluft, Raumdruck, Einzelregler
- TVA, TA-Silenzio: Raumabluft, Raumdruck, Einzelregler

PD-07/2021 - DE/de

 $[\]Delta_{\scriptscriptstyle p}$ Druckdifferenz

① TROX

Legende

Maßangaben für eckige Geräte

B [mm]

Breite der Luftleitung

B, [mm]

Lochabstand im Luftleitungsprofil (Breite)

B, [mm]

Außenabmessung des Luftleitungsprofils (Breite)

H [mm]

Höhe der Luftleitung

H₁ [mm]

Lochabstand im Luftleitungsprofil (Höhe)

 H_2 [mm]

Außenabmessung des Luftleitungsprofils (Höhe)

Maßangaben für runde Geräte

ØD [mm]

Grundgeräte aus Stahlblech: Außendurchmesser des Anschlussstutzens, Grundgeräte aus Kunststoff: Innendurchmesser des Anschlussstutzens

ØD₁ [mm]

Lochkreisdurchmesser von Flanschen

 $\mathbf{ØD}_{2}$ [mm]

Außendurchmesser von Flanschen

L [mm]

Gerätelänge einschließlich Anschlussstutzen

L₁ [mm]

Gehäuse- oder Dämmschalenlänge

n[]

Anzahl Schraubenlöcher von Flanschen

T [mm]

Flanschdicke

Allgemeingültige Angaben

m [kg]

Gerätegewicht (Masse) einschließlich der minimal notwendigen Anbauteile (Regelkomponente)

NG [mm]

Nenngröße

f_m [Hz]

Mittenfrequenz des Oktavbandes

 L_{PA} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des VVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt L_{PA1} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des VVS-Regelgerätes mit Zusatzschalldämpfer, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA2} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des VVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt

 L_{PA3} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des VVS-Regelgerätes mit Dämmschale, A-bewertet, Systemdämpfung berücksichtigt

Hinweis zu akustischen Daten: Alle Schalldruckpegel basieren auf einem Referenzwert von 20 µPa.

q_{vNenn} [m³/h]; [l/s]

Nennvolumenstrom (100 %): Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Internet und in der Produktbroschüre publiziert und im Auslegungsprogramm Easy Product Finder hinterlegt. Referenzwert zur Berechnung von Prozentwerten (z. B. q_{vmax}). Obere Grenze des Einstellbereichs und maximal möglicher Volumenstromsollwert des VVS-Regelgerätes.

q_{vmin Gerät} [m³/h]; [l/s]

Technisch minimaler Volumenstrom: Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Auslegungsprogramm Easy Product Finder hinterlegt. Untere Grenze des Einstellbereichs und minimaler regelbarer Volumenstromsollwert des VVS-Regelgerätes. Sollwerte unterhalb q_{vmin Gerät} (wenn q_{vmin} gleich 0 eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung.

q_{vmax} [m³/h]; [l/s]

Kundenseitig einstellbare, obere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmax} kann nur kleiner oder gleich q_{vNenn} eingestellt werden. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet) wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte maximale Wert (q_{vmax}) zugeordnet (siehe Kennlinie).

q_{vmin} [m³/h]; [l/s]

Kundenseitig einstellbare, untere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmin} sollte nur kleiner oder gleich q_{vmax} eingestellt werden. q_{vmin} nicht kleiner als $q_{vmin \, Gerät}$ einstellen, Regelung sonst instabil, oder die Regelklappe schließt. q_{vmin} gleich 0 ist ein gültiger Wert. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (q_{vmin}) zugeordnet (siehe Kennlinie).

q_v [m³/h]; [l/s] Volumenstrom

30 / 40

∆_{qv} [%]

Volumenstromgenauigkeit der eingestellten Volumenströme

PD-07/2021 - DE/de

Δ_{pst} [Pa]

Statische Druckdifferenz

$\Delta_{\text{nst min}}$ [Pa]

Statische Mindestdruckdifferenz: Die statische Mindestdruckdifferenz entspricht dem Druckverlust des VVS-Reglers bei geöffneter Regelklappe, verursacht durch Strömungswiderstände (Regelklappe). Bei zu geringer Druckdifferenz am VVS-Regler wird selbst bei geöffneter Regelklappe unter Umständen der Sollvolumenstrom nicht erreicht. Wichtige Größe zur Planung des Kanalnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Reglern eine ausreichende statische Mindestdruckdifferenz ansteht und dazu unter anderem der Messpunkt oder die Messpunkte für die Drehzahlsteuerung entsprechend ausgewählt sind.

Längenangaben

Für alle Längenangaben ohne abgebildete Maßeinheit gilt grundsätzlich die Einheit Millimeter [mm].

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich.

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler). Wichtige Unterscheidungsmerkmale: Transmitter: dynamischer Transmitter für saubere Luft bzw. statischer Transmitter für verschmutzte Luft. Stellantrieb: Standardantrieb langsamlaufend, Federrücklaufantrieb für Sicherheitsstellung oder schnelllaufender Antrieb. Schnittstellentechnik: Analogschnittstelle oder digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen.

Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

31 / 40 PD-07/2021 - DE/de

Grundlagen und Definitionen

VVS-Regelgeräte

- Grundlagen und Definitionen
- Volumenstrombereiche und Schnellauslegung
- Akustik und Schnellauslegung
- Messung Strömungs- und Abstrahlgeräusch
- Korrekturwerte zur akustischen Schnellauslegung
- Easy Product Finder (EPF)

Grundlagen und Definitionen

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler).

Wichtige Unterscheidungsmerkmale:

Transmitter

- Dynamischer Transmitter f
 ür saubere Luft
- Statischer Transmitter für verschmutzte Luft Stellantrieb
- Standardantrieb langsamlaufend
- Federrücklaufantrieb für Sicherheitsstellung
- Schnelllaufender Antrieb

Schnittstellentechnik

- Analogschnittstelle
- Digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen

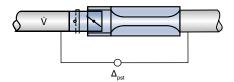
Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

Volumenstrom und Schnellauslegung

Volumenstrombereiche

Die im Produktdatenblatt abgebildeten Tabellen zur Volumenstromauslegung stellen die nutzbaren Volumenstrombereiche des Grundgerätes in Kombination mit den elektronischen Regelkomponenten dar.


Jedes Grundgerät bietet aufgrund seiner strömungstechnischen Eigenschaften einen bestimmten Volumenstrombereich. Jede Regelkomponente ermöglicht aufgrund der verbauten Komponenteneigenschaften und insbesondere der verwendeten Differenzdrucktransmittertechnologie eine vollständige oder eingeschränkte Ausnutzung des Volumenstrombereichs des Grundgerätes.

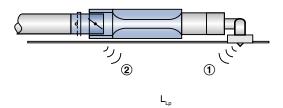
Für die Auswahl eines Volumenstromreglers und des erforderlichen Volumenstromregelbereichs sind daher sowohl das Grundgerät als auch die gewählte Regelkomponente entscheidend. Die Schnellauslegung stellt daher für die Grundgeräteserie die Volumenstrombereiche in Kombination mit verschiedenen Regelkomponenten (TROX Anbauteilen) dar.

Statische Mindestdruckdifferenz Anstrain [Pa]

Die statische Mindestdruckdifferenz entspricht dem Druckverlust des VVS-Regelgerätes bei geöffneter Regelklappe, verursacht durch Strömungswiderstände (Sensorrohre, Klappenmechanik). Bei zu geringer Druckdifferenz am VVS-Regelgerät wird selbst bei vollständig geöffneter Regelklappe unter Umständen der Sollvolumenstrom nicht erreicht. Die statische Mindestdruckdifferenz ist eine wichtige Größe zur Planung des Kanalnetzes sowie zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung und ist daher Bestandteil der Schnellauslegung für die Volumenstrombereiche. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten eine ausreichende statische Mindestdruckdifferenz ansteht und dazu unter anderem der Messpunkt oder die Messpunkte für die Drehzahlsteuerung entsprechend ausgewählt sind.

Statische Druckdifferenz

Akustik


Strömungsgeräusch

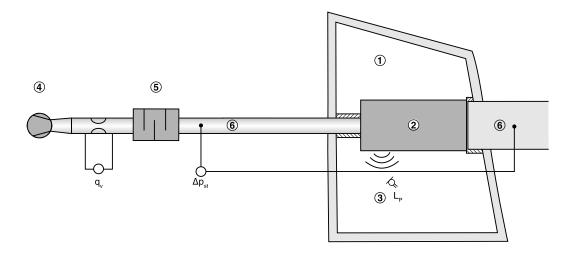
Die an den Einbauten (Regelklappe, Sensorrohre etc.) entstehenden Geräusche breiten sich **in der Luftleitung** als Strömungsgeräusch aus und gelangen durch Luftdurchlässe in die zu belüftenden Räume. Die Pegelminderung durch die Luftleitung und deren Einbauten – wie Umlenkungen und Abzweigungen sowie Mündungsreflexion und Raumdämpfung – kann in der akustischen Berechnung berücksichtigt werden und trägt somit zur Minderung der erforderlichen Dämpfung durch Schalldämpfer bei.

Abstrahlung

Die an den Einbauten (Regelklappe, Sensorrohre etc.) entstehenden Geräusche dringen **über die Gehäusewand** in die benachbarte Umgebung und damit je nach Einbauort auch in die zu belüftenden Räume. Die Berücksichtigung der Pegelminderung durch Deckendämmung und Raumdämpfung kann hier ebenfalls das Ergebnis der akustischen Berechnung positiv beeinflussen.

Geräuschdefinition

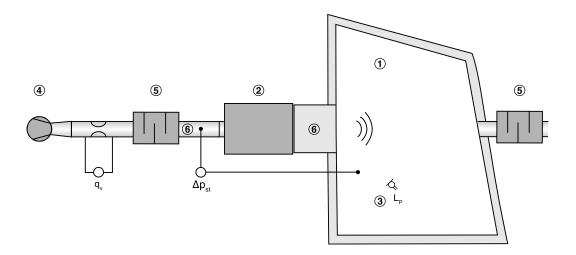
- ① Strömungsgeräusch
- ② Abstrahlgeräusch



Messmethoden

Die akustischen Daten des Strömungs- und Abstrahlgeräusches werden nach EN ISO 5135 ermittelt. Alle Messungen werden in einem Hallraum nach EN ISO 3741 durchgeführt.

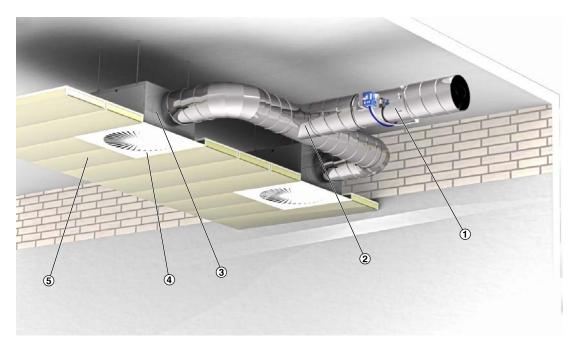
Labortechnische Untersuchung von Abstrahlgeräusch und Strömungsrauschen der Produkte zur Darstellung in den Produktdatenblättern


Messung Abstrahlgeräusch

- ① Hallraum
- 2 Regelgerät
- ③ Mikrofon (Erfassung Abstrahlgeräusch VVS-Regelgerät)
- 4 Ventilator
- Schalldämpfer
- 6 Luftleitung

Messung Strömungsgeräusch

- ① Hallraum
- ② Regelgerät
- ③ Mikrofon (Erfassung Strömungsgeräusch VVS-Regelgerät)
- 4 Ventilator
- ⑤ Schalldämpfer
- 6 Luftleitung



Akustische Schnellauslegung

Grundlagen zur Erläuterung

Die Tabellen in den Produktdatenblättern zur Schnellauslegung der Produkte zeigen die zu erwartenden Schalldruckpegel im Raum jeweils für das Strömungsgeräusch und das Abstrahlgeräusch. Der Schalldruckpegel im Raum resultiert aus der Schallleistung der Produkte – bei gegebenem Volumenstrom und gegebener Druckdifferenz – sowie der pegelmindernden Dämpfung und Dämmung durch die örtlichen Gegebenheiten.

Schallpegelsenkung für Strömungsgeräusch und Abstrahlung

- Regelgerät
- 2 Verteilung im Luftleitungssystem
- ③ Umlenkung
- ④ Mündungsreflexion
- ⑤ Deckendämmung (nur relevant für Abstrahlgeräusch)
- ® Raumdämpfung

Hinweis: Die Raumdämpfung ist abhängig von Raumgröße/ Volumen und der Raumaustattung (Oberflächen, Böden, Wände, Decken)

Systemdämpfung

Unter Systemdämpfung sind alle pegelmindernden Einflüsse zu verstehen – einschließlich der "natürlichen" Dämpfung von Luftleitungsbauteilen und der Schallausbreitung in Räumen oder im Freien. In unseren Produktdatenblättern werden in den Tabellen der akustischen Schnellauslegung für die angegebenen Schalldruckpegel bereits praxisgerechte Dämpfungs- und Dämmungswerte als sogenannte Systemdämpfung berücksichtigt. Die Systemdämpfung für Strömungsgeräusche setzt sich zusammen aus der Verteilung im Luftleitungssystem, der Umlenkung, der Mündungsreflexion und der Raumdämpfung und beeinflusst somit den Schalldruckpegel des Strömungsgeräusches. Die Systemdämpfung für Abstrahlgeräusche setzt sich zusammen aus Deckendämmung und Raumdämpfung und beeinflusst damit den Schalldruckpegel des Abstrahlgeräusches.

Korrekturwerte zur akustischen Schnellauslegung

Die (Korrektur-) Tabellen beinhalten praxisgerechte Werte für die Einflussgrößen der möglichen Pegelsenkung:

- Beim Strömungsgeräusch relevant: raumlufttechnische Anlagenelemente, Mündungsreflexion und Raumdämpfung
- Beim Abstrahlgeräusch relevant: Deckendämmung und Raumdämpfung

Korrekturwerte für die Verteilung im Luftsystem

Die Korrektur für die Verteilung im Luftsystem berücksichtigt die Anzahl der Luftdurchlässe, die einem Volumenstromregler zugeordnet sind. Bei einem Luftdurchlass (Annahme 140 l/s oder 500 m³/h) erfolgt keine Korrektur. Bei höheren Volumenströmen werden typischerweise mehrere Luftdurchlässe verwendet, die zu einer zusätzlichen Reduzierung des Strömungsrauschens führen.

Berücksichtigte Minderung des Strömungsgeräusches durch Verteilung im Luftleitungssystem

Zusätzliche Pegelsenkung je Oktave

qv [m³/h]	500	1000	1500	2000	2500	3000	4000	5000
qv [l/s]	140	280	420	550	700	840	1100	1400
Anzahl Durchlässe	1	2	3	4	5	6	8	10
∆L [dB]	0	3	5	6	7	8	9	10

Berücksichtigte Minderung des Strömungsgeräusches durch Umlenkung, Mündungsreflexion, Raumdämpfung

Zusätzliche Pegelsenkung je Oktave nach VDI 2081

Mittenfrequenz fm [Hz]	63	125	250	500	1000	2000	4000	8000
Umlenkung ΔL [dB]	0	0	1	2	3	3	3	3
Mündungsreflexion ΔL [dB] *	10	5	2	0	0	0	0	0
Raumdämpfung ΔL [dB]	5	5	5	5	5	5	5	5

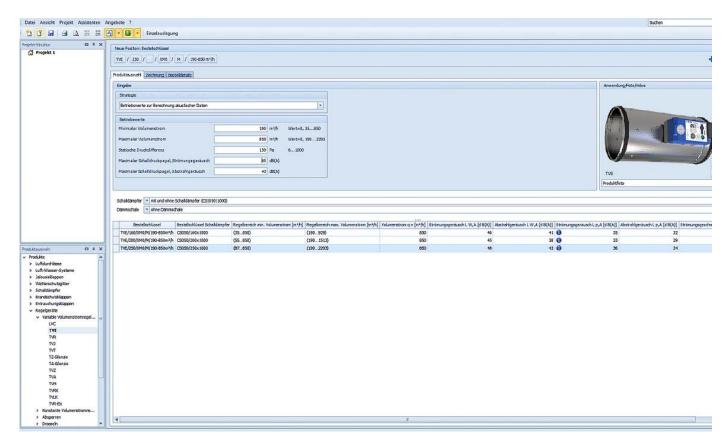
Eine Umlenkung ist in der Systemdämpfung berücksichtigt, die bei horizontaler Verzweigung durch den Anschlusskasten des Luftdurchlasses gegeben ist. Bei vertikalem Anschluss ist diese Dämpfung nicht wirksam. Zusätzliche Umlenkungen führen zu geringeren Schalldruckpegeln.

Berücksichtigte Minderung des Abstrahlgeräusches

Zusätzliche Deckendämmungs- und Raumdämpfungswerte je Oktave nach VDI 2081

Mittenfrequenz fm [Hz]	63	125	250	500	1000	2000	4000	8000
Deckendämmung ΔL [dB]	4	4	4	4	4	4	4	4
Raumdämpfung ΔL [dB]	5	5	5	5	5	5	5	5

Hinweis zu den Korrekturwerten für Deckendämmung und Raumdämpfung


Diese Korrekturwerte berücksichtigen die Ausführung/Ausstattung des betrachteten Raums. Je nach Ausführung (Teppiche, Parkett, Wandbeschaffenheit, Vorhänge etc.) können die realen Dämpfungswerte des Raums und seiner Einrichtung höher oder niedriger sein. Wir berücksichtigen in der akustischen Schnellauslegung einen mittleren (üblichen) Wert von 5 dB.

^{*} Berechnung basiert auf Annahme einer Mündungsreflexion für Nenngröße 250.

Easy Product Finder

Mit dem Easy Product Finder können Sie das Produkt mit Ihren projektspezifischen Daten dimensionieren. Es können Daten zu individuell wählbaren Betriebspunkten (z. B. Volumenströmen, Differenzdrücken und Akustik) berechnet werden.

Hier geht es zum Easy Product Finder:

www.trox.de/epf

