

Anbaugruppe BUDN

Regelkomponente mit dynamischem Transmitter und separatem Stellantrieb für VVS-Regelgeräte

Universale Baueinheit für VVS-Regelgeräte

- Separater Stellantrieb mit einfacher Steckerverbindung
- Einsatz in raumlufttechnischen Anlagen, nur bei sauberer Luft
- Geeignet für konstante und variable Volumenströme
- Aktivierung von Zwangssteuerungen durch externe Beschaltung
- Volumenströme q_{vmin} und q_{vmax} werkseitig parametriert und im Regler gespeichert
- Änderung von Betriebsparametern über PC-Software sowie Smartphone- und Tablet-App (TROX FlowCheck App)
- Servicezugang für PC-Konfigurationssoftware
- Smartphone-Zugriff über NFC-Schnittstelle und Bluetooth
- Sollwertvorgaben, Zwangssteuerungen und Parameteranpassung über analoge Schnittstelle oder Buskommunikation
- Hohe Datentransparenz durch standardisierte Buskommunikation MP-Bus, Modbus RTU oder BACnet MS/TP

X-AIRCONTROL Zonenmodul MP-Bus

Allgemeine Informationen	2	Varianten	7
- unktion	4	Technische Daten	9
Ausschreibungstext	5	Produktdetails	27
Bestellschlüssel	6	Legende	38

Allgemeine Informationen

Anwendung

- Regelungstechnische Kompletteinheit für VVS-Regelgeräte
- Dynamischer Wirkdrucktransmitter und Reglerelektronik in einem Gehäuse vereinigt
- Separater Stellantrieb mit vorgefertigtem Anschlussstecker
- Für den Einsatzbereich nur bei sauberer Luft
- Die übliche Filterung in Komfortklimaanlagen ermöglicht den Reglereinsatz in der Zuluft ohne zusätzliche Staubschutzmaßnahme
- Unterschiedliche Regelaufgaben durch entsprechende Sollwertvorgabe
- Raumtemperaturregler, Gebäudeleittechnik,
 Luftqualitätsregler und andere steuern die variable
 Volumenstromregelung durch Vorgabe von Sollwerten über
 Kommunikationsschnittstelle oder Analogsignal
- Zwangssteuerungen für die Aktivierung von q_{vmin}, q_{vmax},
 Absperrung, Offenstellung über MP-Bus-Datenpunkte oder Modbus/BACnet-Register oder Schalter bzw. Relais möglich
- Volumenstromistwert steht als Netzwerkdatenpunkt oder lineares Spannungssignal zur Verfügung
- Klappenstellung steht als Netzwerkdatenpunkt zur Verfügung
- Konfiguration des Reglers und der Kommunikationsparameter mit TROX FlowCheck App und PC-Tool

Bei starkem Staubanfall in den Räumen

 Entsprechende Abluftfilter vorschalten, da zur Volumenstrommessung ein Teilvolumenstrom durch den Transmitter geleitet wird

Bei zusätzlicher Verschmutzung der Luft, z.B. mit Flusen oder klebrigen Bestandteilen

 Einsatz der Anbaugruppe BUSN statt des hier beschriebenen Universalreglers BUDN

Regelkonzept

- Volumenstromregler arbeitet kanaldruckunabhängig
- Druckschwankungen bewirken keine bleibenden Volumenstromabweichungen
- Eine Totzone (Hysterese), innerhalb der die Stellklappe nicht bewegt wird, sorgt für stabile Regelung
- Volumenstrombereich werkseitig im Regler parametriertq_{vmin}: minimaler Volumenstromq_{vmax}: maximaler Volumenstrom
- Betriebsparameter werden per Bestellschlüssel festgelegt und werkseitig parametriert

Schnittstelle

Analoge Schnittstelle

- Analogschnittstelle mit einstellbarem Signalspannungsbereich
- Analogsignal für Volmenstromsollwert
- Analogsignal f
 ür Volumenstromistwert

Digitale Kommunikationsschnittstelle (Bus)

- MP-Bus
- Modbus RTU, RS485
- BACnet MS/TP, RS485
- Datenpunkte siehe Buslisten

Hybridbetrieb

- Mischbetrieb von analoger und digitaler Schnittstelle Werkseinstellung
- Sollwertvorgabe über Analogschnittstelle
- Istwertausgabe über Analogschnittstelle und Modbus-Kommunikationsschnittstelle

Betriebsarten

Variabler Betrieb (V)

 Sollwertvorgabe über Analogsignal, Modbus, BACnet oder MP-BusArbeitsbereich entspricht q_{vmin} – q_{vmax}

Festwert-Betrieb (F)

Kein Sollwertsignal erforderlich, Sollwert entspricht q_{vmin}

Betriebsparameter

- Volumenstrombereich werkseitig im Regler parametriertq_{vmin}: minimaler Volumenstromq_{vmax}: maximaler Volumenstrom
- q_{vmin} = 0 − 100 % vom Nennvolumenstrom q_{vnenn} einstellbar
- q_{vmax} = 20 100 % vom Nennvolumenstrom q_{venn} einstellbar

Signalspannungsbereiche

- 0 10 V DC
- 2 10 V DC

Bauteile und Eigenschaften

- Transmitter nach dynamischem Messprinzip
- Separat überlastsicherer Antrieb
- Steckbare Anschlussklemmen für Zuleitung und Ansteuerungen inklusive Abdeckung
- Steckbuchse für den Antrieb
- NFC- und Serviceschnittstelle
- Entriegelungstaste zur Handbetätigung
- Kontrolleuchten zur Anzeige des Betriebszustands
- Adressierungstaste zur Einstellung von Teilnehmeradressen bei Busbetrieb
- Reglergehäuse vorbereitet mit 4 Durchbrüchen für Verschraubungen, 2 Kabelverschraubungen M16 × 1,5 für Anschlussleitung im Lieferumfang

Ausführung

2/38

BUDN mit Antrieb LM24A-VST für:

- TVR, TZ-Silenzio, TA-Silenzio, TVZ, TVA, BUDN mit Antrieb NM24A-VST für:
- TVJ
- TVT bis Abmessung 1000×300 bzw. 800×400 BUDN mit Antrieb SM24A-VST für:
- TVT ab Abmessung von 800 × 500 bis 1000 × 600

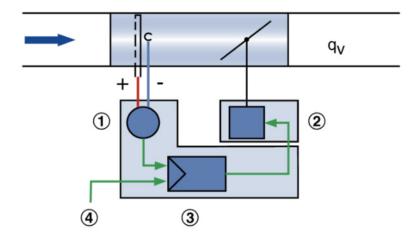
Inbetriebnahme

- Aufgrund der werkseitig eingestellten Volumenströme ist stets darauf zu achten, dass der Einbau der Regelgeräte nur an den vorgesehenen Stellen erfolgt
- Modbus/BACnet/MP-Bus-Schnittstelle: zusätzliche Inbetriebnahmeschritte erforderlich
- Betriebsparameter einstellbar über TROX FlowCheck App

Ergänzende Produkte

- TROX FlowCheck App für Android und iOS
- Einstellgerät Typ ZTH-EU (Bestellschlüssel AT-VAV-B)
- Belimo PC-Tool
- NFC-Bluetooth Konverter ZIP-BT-NFC
- X-AIRCONTROL Zonenmodule für Raumregelung

3 / 38 PD-01/2024 - DE/de


Funktion

Charakteristisch für Volumenstromregelgeräte ist ein geschlossener Regelkreis zur Regelung des Volumenstroms, das heißt Messen – Vergleichen – Stellen.

Die Messung des Volumenstroms erfolgt durch Messung eines Differenzdrucks (Wirkdrucks). Dies geschieht über einen Differenzdrucksensor. Ein integrierter Wirkdrucktransmitter setzt dabei Wirkdruck in ein Spannungssignal um. Der Volumenstromistwert steht als Spannungssignal zur Verfügung. Durch die werkseitige Justage entsprechen 10 V DC am Istwertausgangssignal immer dem Nennvolumenstrom (q_{vNenn}).

Der Volumenstromsollwert wird von einem übergeordneten Regler (z. B. Raumtemperaturregler, Luftqualitätsregler, Gebäudeleittechnik) vorgegeben. Die variable Volumenstromregelung erfolgt zwischen q_{vmin} und q_{vmax}. Die Übersteuerung der Raumtemperaturregelung durch Zwangssteuerungen, beispielsweise Absperrung, ist möglich. Der Regler vergleicht den Volumenstromsollwert mit dem aktuellen Istwert und steuert der Regelabweichung entsprechend den externen Stellantrieb.

Funktionsprinzip Universalregler: TVR, TVJ, TVT, TZ-/TA-Silenzio, TVZ, TVA, TVRK

- ① Wirkdrucktransmitter
- ② Stellantrieb
- ③ Volumenstromregler
- 4 Sollwertsignal

Ausschreibungstext

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts.

Kategorie

Universalregler f
ür Volumenstrom

Anwendung

- Regelung eines konstanten oder variablen Volumenstromsollwerts
- Elektronischer Regler zur Aufschaltung einer Führungsgröße und Abgriff eines Istwertsignals
- Istwertsignal auf Nennvolumenstrom bezogen, dadurch vereinfachte Inbetriebnahme und nachträgliche Verstellung
- Standalone-Betrieb oder Einbindung in die Gebäudeleittechnik

Einsatzbereich

 Wirkdrucktransmitter mit dynamischem Messprinzip für saubere Luft in raumlufttechnischen Anlagen

Stellantrieb

Stellantrieb langsamlaufend; Laufzeit 120 s f
ür 90°

Einbaulage

Beliebig

Anschluss

 Steckbare Anschlussklemmen, keine zusätzliche Klemmdose erforderlich

Versorgungsspannung

24 V AC/DC

Schnittstelle/Ansteuerung

Analogsignal

0 – 10 V DC oder 2 – 10 V DC

Busschnittstelle

- MP-Bus
- Modbus RTU
- BACnet MS/TP

Schnittstelleninformation

Analog

Volumenstromsoll- und Istwert

Busschnittstelle

- Volumenstromsoll- und Istwert
- Klappenstellung
- Störungsstatus

Systemanbindung

MP-Bus für optionale Erweiterungen

- Passend zu TROX X-AIRCONTROL Zonenmodul X-AIR-ZMO-MP
- Gateways für LonWorks, Modbus, BACnet, KNX z. B. Belimo UK24EIB
- Fan Optimiser, z. B. Belimo COU24-A-MP Modbus RTU für optionale Erweiterungen
- Passend zu TROX X-AIRCONTROL Zonenmodul X-AIR-ZMO-MOD, z. B. in Verbindung mit X-SENS-SPLITTER

Sonderfunktionen

 Aktivierung q_{vmin}, q_{vmax}, Geschlossen, Offen, Regelungsstopp durch externe Schaltkontakte/Beschaltung oder Buskommunikation

Parametrierung

Für VVS-Regelgerät spezifische Parameter werkseitig parametriert

- Betriebswerte q_{vmin}, q_{vmax} werkseitig parametriert
- Signalkennlinie werkseitig parametriert

Nachträgliche Anpassung

- Über TROX FlowCheck App (NFC oder Bluetooth mit optionalem Adapter)
- Über PC-Software

Auslieferungszustand

- Elektronischer Regler werkseitig auf Regelgerät montiert
- Werkseitige Parametrierung
- Funktionsprüfung unter Luft; mit Aufkleber bescheinigt
- Regler in Offenstellung

Bestellschlüssel

1 Serie

TVR VVS-Regelgerät

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Material

Verzinktes Stahlblech (Grundausführung)

P1 Oberfläche pulverbeschichtet RAL 7001, silbergrau

A2 Edelstahlausführung

4 Luftleitungsanschluss

5 Nenngröße [mm] 100, 125, 160, 200, 250, 315, 400

6 Zubehör

Keine Eintragung: ohne

D2 Doppellippendichtung beidseitig

G2 Gegenflansch beidseitig

Bestellbeispiel: TVR/100/D2/BUDN/V0/50-354 m³/h

Dämmschale	ohne
Material	verzinktes Stahlblech
Nenngröße	100 mm
Zubehör	Doppellippendichtung beidseitig
Anbauteil	VARYCONTROL Universalregler, dynamischer Transmitter
Signalspannungsbereich	0 – 10 V DC
Betriebswert	$q_{\text{vmin}} = 50 \text{ m}^3/\text{h}$ $q_{\text{vmin}} = 354 \text{ m}^3/\text{h}$

7 Anbauteile (Regelkomponente)

BUDN Universalregler mit dynamischem Transmitter

8 Betriebsart

F Festwert (ein Sollwert)V variabel (Sollwertbereich)

9 Signalspannungsbereich

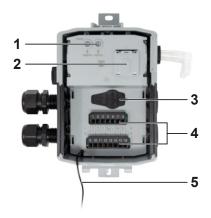
0 0 – 10 V DC **2** 2 – 10 V DC

10 Betriebswerte zur werkseitigen Einstellung

Volumenströme in m^3/h oder I/s q_{vkonst} (nur bei Betriebsart F) q_{vmin} (nur bei Betriebsart V) q_{vmax} (nur bei Betriebsart V)

11 Volumenstromeinheit

m³/h l/s


Varianten

Universalregler, Typ VRU-D3-M/B TR

- ① Adaptionstaste
- ② Antriebsanschlussbuchse
- ③ NFC-Schnittstelle
- Blindabdeckung (nicht in Benutzung)
- (5) Kabelverschraubungen (Versorgung und Steuerung getrennt)
- 6 Befestigungslöcher
- ⑦ Anschluss für Wirkdrucksensor

Universalregler, Typ VRU-***-M/B TR (Klemmenabdeckung geöffnet)

- ① Gelbe Status-LED; Adressierungsbestätigung (nur bei MP-Bus-Betrieb)
- ② Magnetische Halterung für ZIP-BT-NFC
- ③ Servicebuchse
- ⑤ Befestigung Abdeckung (Fangseil)

Stellantrieb LM24A-VST TR, 5 Nm

- ① Klemmbock (Antriebsachse)
- ② Gehäuse Stellantrieb
- ③ Getriebeausrastung
- ④ Anschlussleitung
- ⑤ Steckeranschluss Regler

Stellantrieb NM24A-VST TR, 10 Nm

- ① Klemmbock (Antriebsachse)
- ② Gehäuse Stellantrieb
- ③ Getriebeausrastung
- 4 Anschlussleitung
- Steckeranschluss Regler

Stellantrieb SM24A-VST TR, 20 Nm

- ① Klemmbock (Antriebsachse)
- ② Gehäuse Stellantrieb
- 3 Ausrastung Getriebe
- 4 Anschlussleitung
- ⑤ Steckeranschluss Regler

Technische Daten

Universalregler für VVS-Regelgeräte

	-	Regler		Stellantrieb		_
Bestellsc	hlüsseldetail	Artikelnummer	Тур	Artikelnummer Typ		VVS- Regelgeräte
В	BUDN	A00000073650	VRU-D3-M/B TR	A00000076423	LM24A-VST TR	1
В	BUDN	A00000073650	VRU-D3-M/B TR	A00000073640	NM24A-VST TR	2
В	BUDN	A00000073650	VRU-D3-M/B TR	A00000073642	SM24A-VST TR	3

- ① TVR, TZ-Silenzio, TA-Silenzio, TVZ, TVA.
- ② TVJ, TVT bis Abmessung 1000 × 300 bzw. 800 × 400.
- 3 TVT Abmessung von 800 × 500 bis 1000 × 600.

Universalregler, Typ VRU-D3-M/B TR

Universalregler, Typ VRU-D3-M/B TR		
Messprinzip/Einbaulage	dynamisches Messprinzip, lageunabhängig	
Nennspannung	AC/DC 24 V	
Nennspannung Frequenz	50/60 Hz	
Funktionsbereich	19,2 – 28,8 V AC oder 21,6 – 28,8 V DC	
Leistungsbedarf (Betrieb/Ruhezustand)	1,5 W	
Leistungsbedarf Dimensionierung	2 VA plus angeschlossenem VST-Antrieb	
Leistungsverbrauch Dimensionierunghinweis	I _{max} 20 A @ 5 ms	
Anschluss Antrieb	AC/DC Versorgung durch Regler, PP-Link VST-Antrieb	
Busanschluss	Modbus RTU*, BACnet MS/TP, MP-Bus	
einstellbare Kommunikationsparameter Modbus RTU einstellbare Kommunikationsparameter BACnet MS/TP	Baudrate: 9600, 19200, 38400* , 76800, 115200; Adresse: 1* ,2,3 – 247; Parity: 1-8-N-2* , 1-8-N-1, 1-8-E-1, 1-8-O-1; Anzahl der Knoten: maximal 32 (ohne Repeater) Abschlusswiderstand: 120 Ω; integriert, zuschaltbar Baudrate: 9600, 19200, 38400* , 76800, 115200; Adresse: 1* ,2,3 – 127; Anzahl der Knoten: maximal 32 (ohne Repeater) Abschlusswiderstand: 120 Ω; integriert, zuschaltbar	
Adressierung	Bauseits erforderlich: durch TROX FlowCheck App	
Eingang Sollwertsignal (analog optional)	0 - 10 V DC, 2 - 10 V DC Eingangswiderstand $100 \text{ k}\Omega$	
Ausgang Istwertsignal	0 – 10 V, 2 – 10 V, maximal 0,5 mA	
Schutzklasse IEC/EN	III (Schutzkleinspannung)	
Schutzart	IP 42	
Gewicht 0,3 kg		
EMV	CE gemäß 2014/30/EU	

^{*} Werkseinstellung

Stellantrieb LM24A-VST TR

Stellantrieb LM24A-VST TR

Versorgungsspannung	vom Regler
Leistungsbedarf (Betrieb)	1 W
Leistungsbedarf Dimensionierung	2 VA
Eigenverbrauch (Ruhezustand)	0,4 W
Drehmoment	5 Nm
Laufzeit für 90°	120 s/90°
Eingang Sollwertsignal	vom Regler
Schutzklasse	III (Schutzkleinspannung)
Schutzart	IP 54
EMV	EMV nach 2014/30/EU
Gewicht	0,56 kg

Stellantrieb NM24A-VST TR

Stellantrieb NM24A-VST TR

Versorgungsspannung	vom Regler
Leistungsbedarf (Betrieb)	2 W
Leistungsbedarf Dimensionierung	4 VA
Eigenverbrauch (Ruhezustand)	0,4 W
Drehmoment	10 Nm
Laufzeit für 90°	120 s/90°
Eingang Sollwertsignal	vom Regler
Schutzklasse	III (Schutzkleinspannung)
Schutzart	IP 54
EMV	EMV nach 2014/30/EU
Gewicht	0,78 kg

Stellantrieb SM24A-VST TR

Stellantrieb SM24A-VST TR

oterialities SM24A-VOT Tit				
Versorgungsspannung	vom Regler			
Leistungsbedarf (Betrieb)	2 W			
Leistungsbedarf Dimensionierung	4 VA			
Eigenverbrauch (Ruhezustand)	0,4 W			
Drehmoment	20 Nm			
Laufzeit für 90°	120 s/90°			
Eingang Sollwertsignal	vom Regler			
Schutzklasse	III (Schutzkleinspannung)			
Schutzart	IP 54			
EMV	EMV nach 2014/30/EU			
Gewicht	0,98 kg			

Bedeutung der grünen Status LED/Drucktaste (gilt für alle VRU-Regelkomponenten)

LED/Drucktaste (grün)	Bedeutung	
eingeschaltet	Speisung ok – Normaler Betrieb	
blinkend	in Betrieb – Statusmeldung anstehend*	
bei Tastendruck	Drehwinkeladaption auslösen, danach normalbetrieb	

^{*} Statusmeldung anstehend: signalisiert eine anstehende Statusmeldung, wobei nicht weiter spezifiziert ist, um welche Art der Störung es sich handelt. Zur konkreten Auswertung dieser Sammelstörmeldung muss eine Abfrage mittels Servicetools oder Busschnittstelle erfolgen:

- Belimo Assistant App, TROX FlowCheck-App oder Belimo PC-Tool Software
- MP-Bus Kommando, Modbus-Register, BACnet Objekt

Bedeutung der gelben Status LED/Drucktaste (gilt für alle VRU-Regelkomponenten)

LED/Drucktaste (gelb)		Bedeutung
	blinkend	MP-Adressierung
	bei Tastendruck	Bestätigung der Adressierung

Inbetriebnahme

- Aufgrund der werkseitig eingestellten Volumenströme ist stets darauf zu achten, dass der Einbau der Regelgeräte nur an den vorgesehenen Stellen erfolgt
- Nach Einbau und Verdrahtung ist der Regler über die Analogschnittstelle betriebsbereit
- Volumenstromregelbereiche der VVS-Regelgeräte beachten, insbesondere minimalen Volumenstrom nicht unterschreiten
- Klemmenabdeckung der Regelkomponente nur kurzzeitig während der Verdrahtung abnehmen

Für Busbetrieb sind je nach geforderter Integration der Regelkomponente in das lokale Netzwerk weitere Inbetriebnahmeschritte erforderlich:

Für Betrieb mit Modbus-Schnittstelle

- Sollwertvorgabe mit Servicetool auf Bus umstellen.
- Busprotokoll ist werkseitig bereits aus Modbus RTU eingestellt; keine Anpassung erforderlich
- Modbus-Teilnehmeradresse und Kommunikationseinstellungen anpassen

Für Betrieb mit BACnet-Schnittstelle

- Sollwertvorgabe mit Servicetool auf Bus umstellen
- Busprotokoll mit Servicetool auf BACnet MS/TP umstellen
- BACnet-Teilnehmeradresse und Kommunikationseinstellungen anpassen

Für Betrieb mit MP-Bus-Schnittstelle

- Sollwertvorgabe mit Servicetool auf Bus umstellen
- Busprotokoll mit Servicetool auf MP-Bus umstellen
- MP-Bus-Teilnehmeradresse und Kommunikationseinstellungen anpassen
- Bei Betrieb mit MP-Bus-Schnittstelle in Bestandsanlagen als Ersatz für VRP-M-Regler: Aktivierung des VRP-M-Kompatibilitätsmodus erforderlich

Funktionsumfang Servicetools

Funktion/Parametrierung	TROX FlowCheck App	PC-Tool ¹	ZTH-EU
Einstellung q _{vmin} , q _{vmax}	R, W ²	R, W	R, W
Einstellung Signalspannungsbeich für Analogschnittstelle 0 – 10 V, 2 – 10 V DC	R, W ²	R, W	_
Festlegung Sollwertvorgabe über Analog oder Bus (Modbus, BACnet, MP-Bus)	R, W ²	R, W	_
Einstellung Modbus, BACnet (Adresse, Kommunikationseinstellungen)	R, W ²	R, W	_
Einstellungen MP-Bus (Adresse)	R, W ²	R, W	_
Zwangssteuerungen ausführen (Testfunktion)	ja ³	ja	_
Trendanzeige	ja ³	ja	_

R, W = Funktion ist les- und schreibbar

Für die einwandfreie Nutzung der Servicetools sollten diese immer auf dem aktuellen Softwarestand gehalten werden. Informationen zu aktuellen Versionen/Updates für PC-Tool-Software und Einstellgerät ZTH-EU auf der Belimo-Homepage www.belimo.com.

Mindestversionen für ZTH-EU Firmware: V 2.09.0004

^{- =} Funktion ist für das Servicetool nicht vorhanden

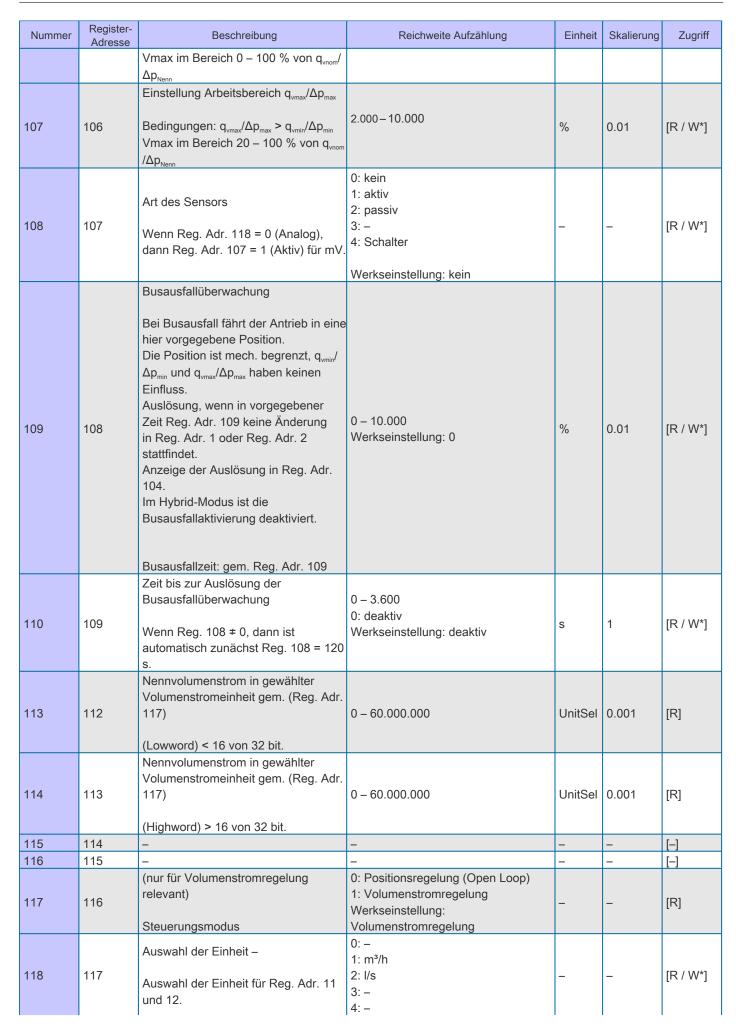
¹ Erfordert Schnittstellenwandler, z. B. Einstellgeräte ZTH-EU

² Funktion/Parametrierung ist ohne Anschluss des Reglers an Versorgungspannung möglich

³ Funktion/Parametrierung nur in Verbindung mit ZIP-BT-NFC **und** angeschlossenener Spannungsversorgung am Regler möglich

Kommunika		ttstelle Modbus RTU		ì	i	
Nummer	Register- Adresse	Beschreibung	Reichweite Aufzählung	Einheit	Skalierung	Zugriff
1	0	Sollwert zwischen $q_{vmin}/\Delta p_{min}$ (Reg. Adr. 105) und $q_{vmax}/\Delta p_{max}$ (Reg. Adr. 106).	0 – 10.000 Werkseinstellung: 0	%	0.01	[R/W]
2	1	Zwangssteuerung Überschreibt den Sollwert mit einer Zwangssteuerung.	0: keine 1: AUF 2: ZU 3: q _{vmin} /Δp _{min} 5: q _{vmax} /Δp _{max} Werkseinstellung: keine	-	-	[R / W]
3	2	Befehlsauslösung Auslösen von Funktionen für den Service und für Testzwecke. Befehl endet automatisch mit 0.	0: keine 1: Adaptieren 3: Synchronisation Werkseinstellung: keine	_	_	[R / W]
4	3	Antriebstyp (*5)	0: Antrieb nicht angeschlossen/nicht bekannt 1: Stellantrieb Luft/Wasser mit/ohne Sicherheitsfunktion 2: Volumenstromregler VAV/EPIV 3: Brandschutzklappe 4: Energy Valve 5: 6way EPIV	-	_	[R]
5	4	Aktuelle Klappenposition gem. mechanischer Grenzen. (*5)	0 – 10.000	%	0.01	[R]
6	5	Klappenwinkel gem. Winkelbereich. (*5)	0 – 9.600	0	0.01	[R]
7	6	Relativer Volumenstrom bezogen auf $q_{v_{nom}}$ (Reg. Adr. 110).	0 – 15.000	%	0.01	[R]
8	7	Absoluter Volumenstrom (*6)	0 – q _{vnom}	m³/h	1	[R]
9	8	Sensorwert (Spannung, Widerstand, Schalter) Wert abhängig von der Einstellung des Sensortyps (Reg. Adr. 107).	0 – 65.535	mV, Ω, 0/1	0.1	[R]
10	9	-	_	_	_	[-]
11	10	Absoluter Volumenstrom in gewählter Volumenstromeinheit gem. (Reg. Adr. 117). (Lowword) < 16 von 32 bit. (*6)	0 – 500.000.000	UnitSel	0.001	[R]
12	11	Absoluter Volumenstrom in gewählter Volumenstromeinheit gem. (Reg. Adr. 117). (Highword) > 16 von 32 bit. (*6)	0 – 500.000.000	UnitSel	0.001	[R]





Nummer	Register- Adresse	Beschreibung	Reichweite Aufzählung	Einheit	Skalierung	Zugriff
13	12	Analoger Sollwert Zeigt den Sollwert in % bei analoger Ansteuerung an. Ist aktiv, wenn Reg. Adr. 118 = 0 (analog).	0 – 10.000	%	0.01	[R]
51		Relativer Differenzdruck Nach Anwendungsfall. gem. (Reg. Adr. 128.).	0 – 20.000	%	0.01	[R]
52		Absoluter Differenzdruck	-1.000 – 15.000	[Pa]	0.1	[R]
53		_	_	_	_	[-]
54		Absoluter Differenzdruck in gewählter Einheit (Reg. Adr. 145) (Lowword) < 16 von 32 bit.	-10.000.000 – 100.000.000	UnitSel	0.001	[R]
55		Absoluter Differenzdruck in ausgewählter Einheit gem. (Reg. Adr. 145) (Highword) > 16 von 32 bit.	-10.000.000 – 100.000.000	UnitSel	0.001	[R]
100	99	Bus Abschlusswiderstand Gibt Auskunft, ob der Abschlusswiderstand (120 Ω) aktiv oder deaktiv ist. Kann nur über Servicetools eingestellt werden.	0: nicht aktiv 1: aktiv Werkseinstellung: nicht aktiv	-	-	[R]
101	100	Seriennummer Teil 1 Beispiel: 00839-31324-064-008. 1st part: 00839 2st part: 31324 3st part: 008	_	-	-	[R]
102	101	Seriennummer Teil 2	-	_	_	[R]
103	102	Seriennummer Teil 3	_	_	_	[R]
104	103	Firmware Version Beispiel: 101, Version 01.01.	-	_	_	[R]
105	104	Fehlfunktionen und Service Information – automatischer Reset, wenn Status behoben.	Bit 0: – Bit 1: mechanischer Stellweg überschritten Bit 2: Antrieb kann nicht bewegt werden (z. B. mech. Überlast) Bit 3: – Bit 4: Fehler des dP-Fühlers Bit 5: Rückluftstrom erkannt Bit 6: Volumenstrom nicht erreicht Bit 7: Durchfluss in Geschlossen- Stellung Bit 8: interne Aktivität (z. B. Testlauf, Adaption) Bit 9: Getriebeausrastung aktiv Bit 10: Busüberwachung ausgelöst Bit 11: Antrieb passt nicht zur Anwendung Bit 12: Drucksensor falsch angeschlossen Bit 13: Drucksensor nicht erreicht Bit 14: Fehler dP Sensor außerhalb des Messbereichs	_	_	[R]
106	105	Einstellung Arbeitsbereich $q_{vmin}/\Delta p_{min}$ Bedingungen: $q_{vmin}/\Delta p_{min} < q_{vmax}/\Delta p_{max}$.	$0 - q_{\text{vmax}}/\Delta p_{\text{max}}$	%	0.01	[R / W*]

Produktdatenblatt

Nummer	Register- Adresse	Beschreibung	Reichweite Aufzählung	Einheit	Skalierung	Zugriff
			5: – 6: cfm			
119	118	Sollwertvorgabe Wenn Reg. Adr. 118 = 0 (analog), dann Reg. Adr. 12 = aktiv. Wenn Reg. Adr. 118 = 1 (Bus), dann Reg. Adr. 1 = aktiv.	0: analog (0 – 10 V, 2 – 10 V) 1: Bus (Modbus, BACnet, MP-Bus) Werkseinstellung: analog	-	-	[R / W*]
120		Druck-Betriebsart Nur für VRU-M1R-M/B TR.	0: negativer Druck 1: positiver Druck	-	-	[R / W*]
121		-	_	_	-	[-]
122		_	_	_	_	[-]
123		_	_	_	_	[-]
124		Raumdruckkaskadenfreigabe Nur verfügbar wenn, Reg. Adr. 124 = 0 (Volumenstromregelung) oder 2 (Raumdruckregelung).	0: deaktiv 1: aktiv 2: schnell aktiv (nur bei VRU-M1R-M/ B TR)	_	_	[R]
125		Anwendungen	O: Volumenstromregelung T: Druckregelung Raumdruckregelung Durchflussmessung	-	_	[R]
126		Anlagenhöhe	0 – 3.000 Werkseinstellung: 0	m	1	[R / W*]
127		Nenndifferenzdruck in der gewählten Einheit gem. (Reg. Adr. 145) Mehr Infor. in (Reg. Adr. 128).	D3: 0 – 50000 M1: 0 – 60000 M1R: 0 – 60000	UnitSel	-	[R]
128		_	_	_	_	[-]
129		Nenndifferenzdruck in Pa Wenn Reg. Adr. 124 = 0 (Volumenstromregelung), dann Adr. Reg. 110 als q _{vnom} . Wenn Reg. Adr. 124 = 1 (Druckregelung) oder 2 (Raumdruckregelung), dann ist das Maximum durch den Diff. Druck gegeben.	D3: 0 – 500 M1: 0 – 600 M1R: 0 – 750	Pa	0,1	[R]
146		Auswahl der Druckeinheit Die ausgewählte Einheit wird in (Reg. Adr. 126) angezeigt.	0: Pascal 1: – 2: Wassersäule Werkseinstellung: Pascal	-	_	[R / W*]

[R] = Register nur lesbar

[R/W] = Register les- und schreibbar

[R/W*] = Register lesbar und eingeschränkt schreibbar; alle beschreibbaren Register ab 100 sind persistent (im EEPROM gespeichert) und dürfen nicht regelmäßig bzw. zyklisch beschrieben werden.

- (*1) Wenn Reg. Adr. 118 = 1 (Bus), dann Reg. Adr. 0 = aktiv
- (*2) Wenn Reg. Adr. 124 = 0 (Volumenstromregelung), dann Reg. Adr. 0 = Volumenstrom
- (*3) Wenn Reg. Adr. 124 = 0 (Volumenstromregelung) und Reg. Adr. 116 = 0 (Positionskontrolle), dann Reg. Adr. = Klappenposition
- (*4) Wenn Reg. Adr. 124 = 1 (Differenzdruckregelung) oder 2 (Raumdruckregelung), dann Reg. Adr. = Druck
- (*5) Wenn Reg. Adr. 124 = 2 (Raumdruckregelung) oder 3 (Volumenstrommessung), dann Reg. Adr. = deaktiv 65.535
- (*6) Wenn Reg. Adr. 124 = 1 (Differenzdruckregelung) oder 2 (Raumdruckregelung), dann Reg. Adr. = deaktiv 65.535

BACnet MS/TP – Protocol Implementation Conformance Statement – PICS (General information)

BAONET MO/11 - 1 Totocol implementation comormance otat	Silione 1 100 (Contra illionination)
Date	11.06.2020
Vendor Name	TROX GmbH
Vendor ID	329
Product Name	VRU-D3-BAC, VRU-M1-BAC, VRU-M1R-BAC
Product Model Number	VRU – BAC
Applications Software Version	01.02.0001
Firmware Revision	10.02.0000
BACnet Protocol Revision	12
Product Description	Controller for VAV/CAV and pressure applications
BACnet Standard Device Profile	BACnet Application Specific Controller (B-ASC)
BACnet Interoperability Building Blocks supported	Data Sharing – ReadProperty-B (DS-RP-B) Data Sharing – ReadPropertyMultiple-B (DS-RPM-B) Data Sharing – WriteProperty-B (DS-WP-B) Data Sharing – WritePropertyMultiple-B (DS-WPM-B) Data Sharing – COV-B (DS-COV-B) Device Management – DynamicDeviceBinding-B (DM-DDB-B) Device Management – DynamicObjectBinding-B (DM-DOB-B) Device Management – DeviceCommunicationControl-B (DM-DCC-B)
Segmentation Capability	No
Data Link Layer Options	MS/TP master, baud rates: 9600, 19200, 38400, 76800, 115200
Device Address Binding	No static device binding supported
Networking Options	None
Character Sets Supported	ISO 10646 (UTF-8)
Gateway Options	None
Network Security Options	Non-secure Device

Kommunikationsschnittstelle BACnet MS/TP - Object processing

Object type	Optional properties	Writeable properties
Analog Input [AI]	Description COV Increment	COV Increment
Analog Output [AO]	Description COV Increment	Present Value COV Increment Relinquish Default
Analog Value [AV]	Description COV Increment	Present Value COV Increment
Binary Input [BI]	Description Active Text Inactive Text	
Device	Description Location Active COV Subscriptions Max Master Max Info Frames Profile Name	Object Identifier Object Name Location Description APDU Timeout (1000 – 60000) Number Of APDU Retries (0 – 10) Max Master (1 – 127) Max Info Frames (1 – 255)
Multi-state Input [MI]	Description State Text	
Multi-state Output [MO]	Description State Text	Present Value Relinquish Default
Multi-state Value [MV]	Description State Text	Present Value (if marked)

Bearbeitung von Services

- Das Gerät unterstützt nicht die Services "Objekt erstellen" und "Objekt löschen".
- Die angegebene maximale Länge der beschreibbaren Zeichenketten basiert auf Einzelbyte-Zeichen.
 - 1. Objektname 32 Zeichen
 - 2. Standort 64 Zeichen
 - 3. Beschreibung 64 Zeichen
- Das Gerät unterstützt die DeviceCommunicationControl-Services, kein Passwort erforderlich.
- Maximal 6 aktive COV-Abonnements mit einer Laufzeit von 1 28800 s (maximal 8 h) werden unterstützt.

Kommunikationsschnittstelle BACnet MS/TP - BACnet-Objekte

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
Device	Device		0 – 4.194.302		WR
RelPos	[Inst.Nr] AI[1]	Klappenposition in % Status Flags: (*1), (*2)	Werkseinstellung: 1 0 – 100	0.01 – 100 Werkseinstellung:	RD
AbsPos	AI[2]	Absolute Position in ° Winkelstellung entsprechend dem gesamten Rotationsbereich. Status Flags: (*1), (*2)	0 – max. Winkel	0.01 – 90 Werkseinstellung:	RD
SpAnalog	AI[6]	analoger Sollwert in % zeigt den analogen Sollwert je nach ausgewählter Anw. Durchfluss, Druck, Klappenstellung gem. ApplicationSel MV[2] an. Wenn Sollwertvorgabe in SpSource MV[122] = 1 (Analog), dann SpAnalog Al[6] = aktiv. Der analoge Sollwert wird durch Min AV[97] und Max AV[98] begrenzt. Status Flags: (*1), (*3)	0 – 100	0.01 – 100 Werkseinstellung: 1	RD
RelDeltaP	AI[9]	Relativer Differenzdruck in % bezogen auf DeltaPnom_Pa AV[122]	0 – 150	0.01 – 150 Werkseinstellung:	RD
RelFlow	AI[10]	Relativer Volumenstrom in % bezogen auf Vnom_m3h AV[112] Status Flags: (*4)	0 – 150	0.01 – 150 Werkseinstellung:	RD
AbsFlow_m3h	AI[12]	Absoluter Volumenstrom in m³/h <u>Status Flags:</u> (*4)	0 – 60.000	1 – 60.000 Werkseinstellung: 10	RD
DeltaP_UnitSel	AI[18]	Absoluter Differenzdruck in ausgewählter Einheit gem. UnitSelPressure MV[127]	-10.000 – 100.000	0.001 – 100.000 Werkseinstellung:	RD
AbsFlow_UnitSel	AI[19]	Absoluter Volumenstrom in ausgewählter Einheit gem. UnitSelAirFlow MV[121] Status Flags: (*4)	0 – 500.000	0.01 – 500.000 Werkseinstellung:	RD
Sens1Analog	AI[20]	Sensor 1 als Analogwert Wenn Sensor1Type MV[220] = 2 (aktiv), dann Anzeige = Analogwert in 0 – 10 V. Wenn Sensor1Type MV[220] = 3 (passiv), dann Anzeige = Widerstandswert. Wenn RmPCaskade MV[10] = 2 (freigegeben) oder 3 (schnell freigegeben), dann ist der Sensoreingang nicht verfügbar.	0 – 65535	0.01 – 1000 Werkseinstellung: 1	RD

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
		Status Flags: (*5)			
DeltaP_Pa	AI[29]	Absoluter Differenzdruck in Pa	0 – 600	0.01 – 600 Werkseinstellung: 10	RD
SpRel	AO[1]	Relativer Sollwert in % Der rel. Sollwert ist abhängig von der Anwendung (Durchfluss/Druck/ Klappenposition). Wenn SpSource MV[122] = 2 (Bus), dann SpRel AO[1] = aktiv. Der analoge Sollwert wird durch Min AV[97] und Max AV[98] begrenzt. Status Flags: (*1), (*2)	0 – 100 Werkseinstellung: 0	0.01 – 100 Werkseinstellung: 1	С
Min	AV[97]	Minimaler Sollwert in % (q_{vmin}/P_{min}) Bedingung: $q_{vmin}/\Delta p_{min} < q_{vmax}/\Delta p_{max}$ $q_{vmin}/\Delta p_{min} \text{ im Bereich 0 - 100 & } q_{vnom}/\Delta p_{nom}$	$0 - q_{\text{vmax}}/\Delta p_{\text{max}}$	0.01 – 100 Werkseinstellung: 1	WR
Max	AV[98]	Maximaler Sollwert in % (q_{vmax}/P_{max}) Bedingung: $q_{vmax}/\Delta p_{max} > q_{vmin}/\Delta p_{min}$ q_{vmax}/P_{max} im Bereich 20 – 100 % von q_{vnom}/P_{nom}	$q_{vmin}/\Delta p - 100$	0.01 – 100 Werkseinstellung: 1	WR
Vnom_m3h	AV[112]	Nennvolumenstrom in m³/h	0 – 50.000	0.01 – 50.000 Werkseinstellung:	RD
Vnom_UnitSel	AV[119]	Nennvolumenstrom in ausgewählter Einheit gem. UnitSel MV[121]	0 – 250.000	0.01 – 1.000: Werkseinstellung:	RD
SystemAltitude	AV[120]	Anlagenhöhe in Meter über Meeresspiegel	0 – 3.000	1 – 3.000 Werkseinstellung: 10	WR
DeltaPnom_Pa	AV[122]	Nenndifferenzdruck in Pa Der Nenndifferenzdruck in abhängig vom ausgewählten Drucksensor (D3, M1, M1R). Je nach gewählter Anwendung dient der Nenndifferenzdruck als dp@Vnom oder als max. Druckbegrenzung Wenn ApplicationSel MV[2] = 1 (Durchflussregelung), dann Anzeige = Nenndifferenzdruck Wenn ApplicationSel MV[2] = 2 (Druckregelung) oder 3 (Raumdruckregelung), dann Anzeige = max. Druckbegrenzung	D3: 0 – 500 M1: 0 – 600 M1R: 0 – 75	1 – 600 Werkseinstellung: 1	RD
DeltaPnom_UnitSel	AV[129]	Nenndifferenzdruck in ausgewählter Einheit gem. UnitSelPressure MV[127] Mehr Infos: Siehe AV[122].		0.01 – 1000 Werkseinstellung:	RD

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
BusWatchdog	AV[130]	Zeit bis zur Auslösung der Busausfallüberwachung in s Wenn BusWatchdog AV[130] ≠ 0, dann Überwachung von SpRel AO[1] und Override MO[1] auf Änderung. Wenn Änderungen bei SpRel AO[1] und Override MO[1], dann Rücksetzen der Busausfallüberwachung. Wenn SpSource MV[122] = 1 (Analog), dann berücksichtigt BusWatchdog AV[130] nur Override MO[1].	0 – 3600 s Werkseinstellung: 0 (Busausfallüberwachung deaktiviert)	0.01 – 1000 Werkseinstellung: 1	WR
Sens1Switch	BI[20]	Schalterzustand des Schalters am Sensoreingang Wenn SenType MV[220] = 5 (Schalter), dann ist Sens1Switch BI[20] = aktiv. Status Flags: (*6)	0: Inactive 1: Active	_	RD
BusTermination	BI[99]	Abschlusswiderstand Zeigt an, ob der Abschlusswiderstand (120 Ω) über die Service Tools aktiviert wurde.	0: deaktiviert 1: aktiviert	_	RD
SummaryStatus	BI[101]	Sammelstatus Fasst den Status der Objekte zusammen: "StatusSensor" MI[103] "StatusFlow" MI[104] "StatusActuator" MI[106] "StatusPressure" MI[109] "StatusDevice" MI[110]	ungleich 1: OK 1: nicht OK	_	RD
RmPCasacade	M∨ [10]	Raumdruckkaskade Wenn RmPCascade MV[10] = 2 (aktiv) oder 3 (aktiv schnell), dann ist Sensor1 Eingang für die Raumkaskade (0 – 10 V). Wenn ApplicationSel MV[2] = 1 (Volumenstromregelung) oder 3 (Raumdruckregelung), dann RmPCascade MV [10] = aktiv. Status Flags: (*7)	1: deaktiv 2: aktiv 3: aktiv schnell (nur bei M1R)	_	RD
InternalActivity	MI[100]	Interner Status	1: keine 2: – 3: Adaption 4: Synchronisation	-	RD
StatusSensor	MI[103]	Status des Differenzdrucksensors	1: ok 2: dP Sensor nicht ok	-	RD

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
		Wenn Status Ende = automatisches Zurücksetzen	3: dP Sensor außerhalb des Messbereichs 4: dP Sensor falsch verbunden		
StatusFlow	MI[104]	Status Volumenstrom Wenn Volumenstrom nicht innerhalb 600 s vorhanden, dann StatusFlow MI[104] = 3.	1: ok 2: – 3: kein Luftstrom erkannt	-	RD
StatusActuator	MI[106]	Status des Antriebs <u>Status Flags:</u> (*2)	1: ok 2: Antrieb kann nicht bewegt werden 3: Getriebeausrastung aktiv 4: mechanischer Stellweg überschritten 5: Antrieb passt nicht zur Anwendung	_	RD
StatusPressure	MI[109]	Status Differenzdruck Wenn Differenzdruck nicht innerhalb 180 s vorhanden, dann StatusPressure MI[109] = 3.	1: ok 2: – 3: Druck nicht erreicht	_	RD
StatusDevice	MI[110]	Status des Geräts bei Busüberwachung Entsprechend BusWatchdog AV[130].	1: ok 2: Busausfallüberwachung aktiviert	_	RD
Override	MO[1]	Zwangssteuerung Überschreibt den Sollwert mit einem Zwangsbefehl. Status Flags: (*8)	1: Keine 2: AUF 3: ZU 4: q _{vmin} /Δp _{min} 5: – 6: q _{vmax} /Δp _{max} Werkseinstellung: Keine (1)	_	С
ApplicationSel	MV[2]	Anzeige der Anwendung VRU-D3-M/B TR, VRU-M1-M/B TR - Durchflussregelung - Druckregelung - Durchflussmessung VRU-M1R-M/B TR - Raumdruckregelung	1: Durchflussregelung 2: Druckregelung 3: Raumdruckregelung 4: Durchflussmessung	_	RD
ControlMode	MV[100]	(Nur für Volumenstromregelung relevant) Steuermodus Status Flags: (*9)	1: PosCtrl 2: FlowCtrl Werkseinstellung: FlowCtrl	_	RD
OperationMode	MV[102]	Betriebsart Nur für VRU-M1R-BAC relevant. Status Flags: (*10)	1: negativer Druck 2: positiver Druck	-	WR
Command	MV[120]	Testfunktionen auslösen <u>Status Flags:</u> (*2)	1: keine 2: Adaption 3: – 4: Zurücksetzen	_	WR

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
			Werkseinstellung: keine		
UnitSelAirFlow	MV[121]	Auswahl der Volumenstromeinheit Die ausgewählte Einheit wird in Al[19] und AV[104] angezeigt.	1: – 2: m³/h 3: l/s 4: – 5: – 6: – 7: cfm	_	WR
SpSource	MV[122]	Auswahl der Sollwertvorgabe Wenn SpSource MV[122] = 1 (analog), dann SpAnalog Al[6] = aktiv. Wenn SpSource MV[122] = 2 (Bus), dann SpRel AO [1] = aktiv.	1: analog (0 – 10 V, 2 – 10 V) 2: Bus (Modbus, BACnet, MP-Bus) Werkseinstellung: analog	-	WR
UnitSelPressure	MV[127]	Auswahl der Druckeinheit Die ausgewählte Einheit wird in DeltaP_UnitSel Al[18] und DeltaPnom_UnitSel AV[129] angezeigt.	1: Pascal 3: Wassersäule Werkseinstellung: Pascal	-	WR
UnitSelTemp	MV[128]	Auswahl Temperatureinheit Die gewählte Einheit steht in Al[20].	1: K 2: °C 3: °F Werkseinstellung: °C (2)	-	W
Sens1Type	MV[220]	Festlegung des Sensortyps Wenn Sens1Type MV[220] = 2 (Active) oder 3 (Passive), dann Sens1Analog Al[20] aktiv. Wenn Sens1Type MV [220] = 5 (Switch), dann Sens1Schalter Bl[20] aktiv.	1: keine 2: aktiver Sensor (im Hybridbetrieb) 3: passiver Sensor 4: – 5: Schalter Werkseinstellung: keine	-	WR

RD = Register nur lesbar

WR = Register les- und schreibbar

C = Commendable with priority array

Status Flags:

- (*1) Wenn Getriebeausrastung gedrückt, dann Overridden = 1
- (*2) Wenn ApplicationSel MV[2] = 3 (Raumdruckregelung) oder 4 (Durchflussmessung) ist, dann Out of Service = 1
- (*3) Wenn SpSource MV[122] = 2 (Bus), dann Out of Service = 1
- (*4) Wenn ApplicationSel MV[2] = 2 (Druckregelung) oder 3 (Raumdruckregelung) ist, dann Out of Service = 1
- (*5) Wenn Sens1Type MV[220] = 1 (kein), dann Out of Service = 1
- (*6) Wenn Sens1Type MV[220] ± 5, dann Out of Service = 1
- (*7) Wenn ApplicationSel MV[2] = 2 (Druckregelung) oder 4 (Durchflussmessung) ist, dann Out of Service = 1
- (*8) Wenn ApplicationSel MV[2] = 4 (Durchflussmessung) ist, dann Out of Service = 1
- (*9) Wenn ApplicationSel MV[2] # 1 (Volumenstromregelung) ist, dann Out of Service = 1
- (*10) Wenn ApplicationSel MV[2] ± 3 (Raumdruckregelung), dann Out of Service = 1

Produktdetails

Analogschnittstelle 0 - 10 V DC bzw. 2 - 10 V DC

Im Auslieferungszustand hat die Sollwertvorgabe über die analoge Schnittstelle zu erfolgen. Sollte die Sollwertvorgabe über eine digitale Kommunikationsschnittstelle erfolgen, kann dies jederzeit über die TROX FlowCheck App auf Modbus, BACnet oder MP-Bus umgestellt werden. Die Analogschnittstelle kann für den Signalspannungsbereich 0 – 10 V DC oder 2 – 10 V DC durch die TROX FlowCheck App eingestellt werden. Die Zuordnung von Volumenstromsollwert bzw. -istwert zu Spannungssignal ist in den Kennliniendarstellungen abgebildet.

Sollwertvorgabe

Variabler Betrieb

- In der variablen Betriebsart erfolgt die Sollwertvorgabe mit einem Analogsignal an der Klemme 3. Sollwertvorgaben über das jeweilige Bussystem werden abgewiesen
- Gewählter Signalspannungsbereich 0 10 V bzw. 2 10 V DC wird dem eingestellten Volumenstrombereich q_{vmin} q_{vmax} zugeordnet
- Volumenstrombereich q_{vmin} q_{vmax} werkseitig entsprechend Bestellschlüsselangaben voreingestellt
- Nachträgliche Anpassung von q_{vmin} bzw. q_{vmax} über Einstellgerät, TROX FlowCheck App oder PC-Tool möglich

Festwertbetrieb

- In der Betriebsart Festwertbetrieb ist kein Analogsignal an der Klemme 3 erforderlich
- Es wird der durch q_{vmin} eingestellte Volumenstromfestwert geregelt
- Volumenstrom q_{vmin} werkseitig entsprechend Bestellschlüsselangabe voreingestellt
- Nachträgliche Anpassung von q_{wnin} über Einstellgerät, TROX FlowCheck App oder PC-Tool möglich

Istwert als Feedback für Überwachung oder Folgeregelung

- An der Klemme 5 kann der vom Regler gemessene Istvolumenstrom als Spannungssignal abgegriffen werden
- Gewählter Signalspannungsbereich 0 10 V DC bzw. 2 10 V DC wird auf den Volumenstrombereich 0 q_{vNenn} abgebildet
- Im Analogbetrieb besteht parallel die Möglichkeit, Betriebsdaten über die Modbusschnittstelle abzufragen (Hybridbetrieb)

Zwangssteuerung

Für besondere Betriebssituationen kann der Volumenstromregler in einen speziellen Betriebszustand (Zwangssteuerung) gebracht werden. Möglich sind: Regelung q_{vmin} , Regelung q_{vmax} , Regelklappe in Offenstellung (OFFEN), Regelklappe geschlossen (ZU) oder Regelungsstopp.

Zwangssteuerungen über Signaleingang Y oder Zwangssteuerungseingänge z1, z2

Durch passende Beschaltung der Eingänge Y, z1, z2 können die Zwangssteuerungen entsprechend den Anschlussbildern über Beschaltung mit externen Schaltkontakten/Relais aktiviert werden (siehe Verdrahtungsbeispiele).

Zwangssteuerung ZU über Führungssignal am Signaleingang Y

Bei Signalspannungsbereich 0 – 10 V DC und Einstellwert q_{vmin} = 0

- Klappe ZU: Y < 0,45 V DC
- Regelbetrieb: Y > 0,55 V DC

Bei Signalspannungsbereich 0 – 10 V DC und $q_{vmin} > 0$

 Ist über das Führungssignal keine Zwangssteuerung ZU möglich. Der Regelvorgang erfolgt über den gesamten Signalspannungsbereich

Bei Signalspannungsbereich 2 – 10 V DC und Einstellwert q_{vmin} = 0

- Klappe ZU: Y < 2,36 V DC
- Regelbetrieb: Y > 2,44 V DC

Bei Signalspannungsbereich 2 – 10 V DC und Einstellwert q_{vmin} > 0

- Klappe ZU: Y < 0,3 V DC
- Regelung q_{vmin}: Y > 0,3 V DC
- Regelbetrieb: Y > 2,44 V DC

Digitale Kommunikationsschnittstelle

Für eine Sollwertvorgabe über die Busschnittstelle ist eine bauseitige Umstellung mit der TROX FlowCheck App notwendig. Die Busschnittstelle kann auf Modbus, BACnet und MP-Bus eingestellt werden. Für den reibungslosen Datenaustausch im bauseitigen Busnetzwerk ist die Einstellung der Kommunikationsparameter und der Teilnehmeradresse für die Busschnittstelle erforderlich. Die Kommunikationsparameter der Bussysteme (Adresse, Baudrate ...) können mit der TROX FlowCheck App eingestellt werden. Die Schnittstelle bietet standardisierte Busregister/Objektzugriffe auf die verfügbaren Datenpunkte.

Sollwertvorgabe

- In der Betriebsart Modbus RTU (Werkseinstellung) erfolgt die Sollwertvorgabe durch Vorgabe des Volumenstromsollwerts [%] im Modbusregister 0
- In der Betriebsart BACnet MS/TP erfolgt die Sollwertvorgabe durch Vorgabe des Volumenstromsollwerts [%] im BACnet-Object AI[1]
- Der übergebene Prozentwert bezieht sich auf den durch q_{vmin} q_{vmax} festgelegten Volumenstrombereich
- Volumenstrombereich q_{vmin} q_{vmax} werkseitig entsprechend Bestellschlüsselangaben voreingestellt
- Nachträgliche Anpassung von q_{vmin} bzw. q_{vmax} über Einstellgerät, TROX FlowCheck App, PC-Tool oder über Modbus/BACnet-Schnittstelle möglich

Istwert als Feedback für Überwachung oder Folgeregelung

- Sowohl im Modbus als auch im BACnet sind die Istwerte in m³/h (Werkseinstellung) ablesbar. Andere Einheiten wie I/s oder cfm sind möglich
- Neben dem Volumenstromistwert k\u00f6nnen weitere Informationen \u00fcber andere Modbusregister/BACnet-Objekte ausgelesen werden
- Übersicht der Register/Objekte in den Kommunikationstabellen
- Zu Diagnosezwecken kann im Busbetrieb der Volumenstromistwert an der Klemme 5 abgegriffen werden
- Der Volumenstrombereich 0 q_{wNenn} entspricht dabei immer dem Signalspannungsbereich von (0)2 10 V DC

Zwangssteuerung

Für besondere Betriebssituationen kann der Volumenstromregler in einen speziellen Betriebszustand (Zwangssteuerung) gebracht werden. Möglich sind: Regelung $q_{\tiny vmin}$, Regelung $q_{\tiny vmax}$, Regelklappe in Offenstellung (OFFEN), Regelklappe geschlossen (ZU) oder Regelungsstopp.

Zwangssteuerung über den Bus

Vorgaben erfolgen über das Modbusregister 1 bzw. über BACnet-Object Type MO[1].

Zwangssteuerung durch Busausfallüberwachung (Modbus)

Bei Ausfall der Modbuskommunikation für einen festgelegten Zeitraum kann ein vordefinierter Betriebszustand q_{vmin} , q_{vmax} , OFFEN oder ZU aktiviert werden.

- Die Festlegung der bei Busausfall zu aktivierenden Zwangssteuerung erfolgt über Modbusregister 108 oder 109
- Die Festlegung, nach welcher Busausfallzeit die Zwangssteuerung aktiviert wird, erfolgt über Modbusregister 109 oder 110
- Jegliche Modbuskommunikation setzt den Timeout der Busausfallüberwachung zurück

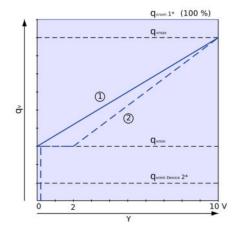
Zwangssteuerung durch Busausfallüberwachung (BACnet)

Bei Ausfall der BACnet-Kommunitkation für einen festgelegten Zeitraum kann ein vorderfinierter Betriebszustand aktiviert werden.

- Die Festlegung des bei Busausfall zu aktivierenden Sollwerts erfolgt über den Reliquish_Default von SpRel (Object AO1)
- Busausfallzeit wird definiert über BusWatchdog (Objekttyp AV [130])
- Kommunikation auf die Datenpunkte SpRel (Object AO[1] und Override (Object MO[1]) setzt den Timeout der Busausfallüberwachung zurück

Zwangssteuerungen für Diagnosezwecke

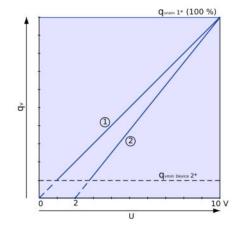
Aktivierung über Bussyteme, extern/bauseitige Schaltkontakte (Brücken), und TROX FlowCheck App.


Priorisierung verschiedener Vorgabemöglichkeiten

Vorgaben für Zwangssteuerungen über Schaltkontakte sind gegenüber Modbus/BACnet-Vorgaben priorisiert.

- Höchste Priorität: Vorgabe über eine Zwangssteuerung durch externe Beschaltung (Schaltkontakt, Relais)
- Mittlere Priorität: Vorgaben über den Servicestecker (TROX FlowCheck App) zu Testzwecken
- Niedrigste Priorität: Vorgabe über Modbus/BACnet/MP-Bus

Kennlinie des Sollwertsignals



- ① Signalspannungsbereich 0 10 V
- ② Signalspannungsbereich 2 10 V
- $1^* = q_{vNenn} Nennvolumenstrom$
- 2* = q_{vmin Gerät} minimal regelbarer Volumenstrom

Berechnung Volumenstromsollwert bei 0 - 10 V

$$q_{vset} = \frac{Y}{10 \; V} \times (q_{vmax} - q_{vmin}) + q_{vmin}$$

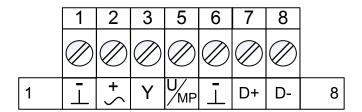
Kennlinie des Istwertsignals

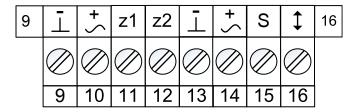
- ① Signalspannungsbereich 0 10 V
- ② Signalspannungsbereich 2 10 V
- $1^* = q_{vNenn} Nennvolumenstrom$
- $2^* = q_{\text{vmin Gerät}}$ minimal regelbarer Volumenstrom

Berechnung Volumenstromistwert bei 0 - 10 V

$$q_{vact} = \frac{U}{10 V} \times q_{vnom}$$

Berechnung Volumenstromsollwert bei 2 – 10 V


$$q_{set} = \frac{\textit{Y} - 2\textit{V}}{(10\textit{V} - 2\textit{V})} \times (q_{vmax} - q_{vmin}) + q_{vmin}$$


Berechnung Volumenstromistwert bei 2 – 10 V

$$q_{vact} = \frac{U - 2}{10 V - 2 V} \times q_{vnom}$$

Ansicht steckbare Klemmenleisten beim VRU

Universal

Legende

1, 6, 9, 13: $_{\perp}$, – = Masse, Null

2, 10, 14: ~, + = Versorgungsspannung 24 V

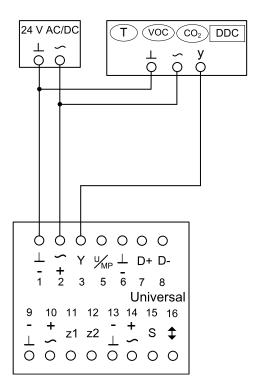
3: Y = Sollwertsignal Y und Zwangssteuerungen

5: U/MP = Istwertsignal oder MP-Bus oder Anschluss Servicetool

7: D+ = B = C2 = RS-485 Bus (BACnet MS/TP oder Modbus RTU)

8: D- = A = C1 = RS-485 Bus (BACnet MS/TP oder Modbus RTU)

11, 12: z1, z2 = Zwangssteuerungseingänge


15: Erweiterung für externen Sensor

16: Nicht belegt

Anschlussschema analoge Ansteuerung

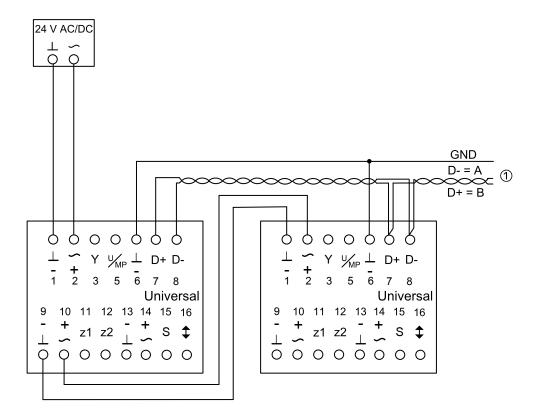
Legende

1: \perp , – = Masse, Null

2: ~, + = Versorgungsspannung 24 V AC/DC

3: Y = Sollwertsignal und Zwangssteuerungen

5: U/MP = Istwertsignal


Hinweise

- T, VOC, CO2, DDC = Sollwertvorgabe q_v
- Sollwert- und Istwertsignal je nach Einstellung Signalspannungsbereich 0 10 V DC oder 2 10 V DC

Anschlussschema Modbus-, BACnet-Betrieb

Legende

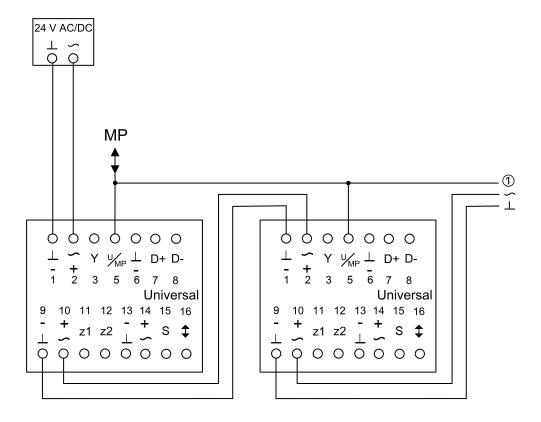
1: ⊥, - = Masse, Null

2: ~, + = Versorgungsspannung 24 V AC/DC

6: GND = gemeinsames Massepotential

7: D+ = Modbus/BACnet B, C2

8: D- = Modbus/BACnet A, C1


Hinweis

- ① Weitere Netzwerkteilnehmer bei Modbus/BACnet (maximal 32)
- Kommunikation und Versorgung sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden. Im VRU integrierte Busabschlusswiderstände können mit dem Servicetool aktiviert werden

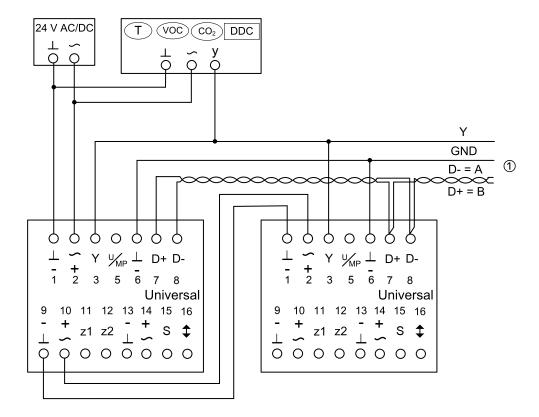
Anschlussschema MP-Bus

Legende

1: ⊥, - = Masse, Null

2: ~, + = Versorgungsspannung 24 V AC/DC

5: U/MP = MP-Bus-Anbindung


Hinweis

- ① Anzahl MP-Busteilnehmer von der Art der MP-Bus-Geräte abhängig; maximal 16 Teilnehmer
- Davon maximal 8 MP-Teilnehmer (z. B. Volumenstromregler)
- Zuzüglich maximal 8 MPL-Teilnehmer (z. B. Ventilantriebe)
- Kommunikation und Versorgung sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungsspannung aller Busteilnehmer beachten

Anschlusschema Hybridbetrieb

Legende:

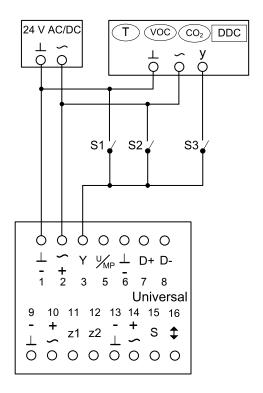
1: ⊥, - = Masse, Null

2: ~, + = Versorgungsspannung 24V AC/DC

6: GND = gemeinsames Massepotential

7: D+ = Modbus/BACnet B, C2

8: D- = Modbus/BACnet A, C1


Hinweise

- T, VOC, CO 2, DDC = Sollwertvorgabe q_v
- ① Weitere Netzwerkteilnehmer bei Modbus/BACnet (maximal 32)
- Kommunikation und Versorgung sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden
- Im VRU integrierte Busabschlusswiderstände können mit dem Servicetool aktiviert werden

Anschlussschema Zwangssteuerungen, Alternative 1: Y-Eingang

Legende

- 1: ⊥, = Masse, Null
- 2: ~, + = Versorgungsspannung 24 V AC/DC
- 3: Y = Sollwertsignal und Zwangssteuerungen
- 5: U/MP = Istwertsignal oder MP-Bus oder Anschluss Servicetool

Hinweise

- T, VOC, CO2, DDC = Sollwertvorgabe für q_v
- Bei Kombination mehrerer Zwangssteuerungen die Schalter gegeneinander verriegeln, um Kurzschlüsse zu vermeiden
- Sollwert- und Istwertsignal je nach Einstellung Signalspannungsbereich 0 10 V DC oder 2 10 V DC
- Kommunikation und Versorgung sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden. Im VRU integrierte Busabschlusswiderstände können mit dem Servicetool aktiviert werden

Beschaltungsvarianten Y-Signal

Konstantbetrieb q_{vmin} (Zwangssteuerung q_{vmin})

- Nur Schalter (Verbindung) S1 darf geschlossen werden
- Funktioniert nur bei Signalspannungsbereich 0 10 V DC

Zwangssteuerung q_{vmax}

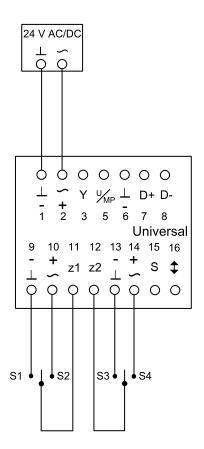
• Nur Schalter (Verbindung) S2 darf geschlossen sein

Regelbetrieb q_{vmin} - q_{vmax}

- Analoge Sollwertvorgabe z. B. durch Raumtemperaturregelung
- Nur Schalter (Verbindung) S3 darf geschlossen sein

Zwangssteuerung Regelklappe geschlossen ZU

- Nur Schalter (Verbindung) S1 darf geschlossen sein
- Funktioniert nur bei Signalspannungsbereich 2 10 V DC



36 / 38

Anschlussschema Zwangssteuerungen, Alternative 2: z1/z2-Eingang

Legende

9: ⊥, - = Masse, Null

10: ~, + = Versorgungsspannung 24 V AC/DC

11: Zwangssteuerung z1

12: Zwangssteuerung z2

13: ⊥, – = Masse, Null

14: ~, + = Versorgungsspannung 24 V AC/DC

Hinweise

- Bei Kombination mehrerer Zwangssteuerungen die Schalter gegeneinander verriegeln, um Kurzschlüsse zu vermeiden
- Sollwert- und Istwertsignal je nach Einstellung Signalspannungsbereich 0 10 V DC oder 2 10 V DC
- Kommunikation und Versorgung sind nicht galvanisch getrennt
- Gleichen Massebezugspunkt für die Versorgungspannung aller Busteilnehmer beachten
- Busabschlusswiderstände an den Enden der Busleitung verwenden. Im VRU integrierte Busabschlusswiderstände können mit dem Servicetool aktiviert werden

Beschaltungsvarianten z1/z2-Eingang

Zwangssteuerung Regelklappe geöffnet AUF

Nur Schalter (Verbindung) S2 darf geschlossen sein

Zwangssteuerung Regelklappe geschlossen ZU

Nur Schalter (Verbindung) S3 darf geschlossen sein

Zwangssteuerung q_{vmax}

Nur Schalter (Verbindung) S4 darf geschlossen sein

Regelungsstopp

Nur Schalter (Verbindung) S1 darf geschlossen sein

Weitere Zwangssteuerungen am Y-Eingang möglich.

Legende

q_{vNenn} [m³/h]; [l/s]

Nennvolumenstrom (100 %): Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Internet und in der Produktbroschüre publiziert und im Auslegungsprogramm Easy Product Finder hinterlegt. Referenzwert zur Berechnung von Prozentwerten (z. B. q_{vmax}). Obere Grenze des Einstellbereichs und maximal möglicher Volumenstromsollwert des VVS-Regelgerätes.

$\mathbf{q}_{\text{vmin Gerät}}$ [m³/h]; [l/s]

Technisch minimaler Volumenstrom: Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Auslegungsprogramm Easy Product Finder hinterlegt. Untere Grenze des Einstellbereichs und minimaler regelbarer Volumenstromsollwert des VVS-Regelgerätes. Sollwerte unterhalb q_{vmin Gerät} (wenn q_{vmin} gleich 0 eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung.

q_{vmax} [m³/h]; [l/s]

Kundenseitig einstellbare, obere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmax} kann nur kleiner oder gleich q_{vNenn} eingestellt werden. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet) wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte maximale Wert (q_{vmax}) zugeordnet (siehe Kennlinie).

\mathbf{q}_{vmin} [m³/h]; [l/s]

Kundenseitig einstellbare, untere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmin} sollte nur kleiner oder gleich q_{vmax} eingestellt werden. q_{vmin} nicht kleiner als $q_{\text{vmin Gerät}}$ einstellen, Regelung sonst instabil, oder die Regelklappe schließt. q_{vmin} gleich 0 ist ein gültiger Wert. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem

minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (q_{vmin}) zugeordnet (siehe Kennlinie).

q_v [m³/h]; [l/s] Volumenstrom

Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich.

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler). Wichtige Unterscheidungsmerkmale: Transmitter: dynamischer Transmitter für saubere Luft bzw. statischer Transmitter für verschmutzte Luft. Stellantrieb: Standardantrieb langsamlaufend, Federrücklaufantrieb für Sicherheitsstellung oder schnelllaufender Antrieb. Schnittstellentechnik: Analogschnittstelle oder digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen.

