Splitters Type XKA

For high insertion loss with broadband damping, even in the high-frequency range

Energy-saving splitters, ready to be used in air conditioning systems

- Attenuation effect due to absorption
- Energy efficient due to aerodynamically profiled frame (radius > 15 mm)
- Acoustic data measured to ISO 7235
- Absorption material is biosoluble and hence hygienically safe
- Absorption material faced with glass fibre fabric as a protection against erosion due to airflow velocities up to 20 m/s
- Absorption material non-combustible, to EN 13501, fire rating class A1
- Intermediate sizes in increments of 1 mm
- Operating temperature up to 100 °C

Optional equipment and accessories

- Additional perforated sheet metal to protect the absorption material
- Stainless steel, aluminium and PUR-coated constructions upon request

Splitter frames with folded edges

Tested to VDI 6022

Туре		Page
XKA	General information	XKA – 2
	Function	XKA – 3
	Technical data	XKA – 4
	Quick sizing	XKA – 5
	Specification text	XKA – 8
	Order code	XKA – 9
	Dimensions and weight	XKA – 10
	Installation details	XKA – 12
	Basic information and nomenclature	XKA – 14

Application

Application

- Sound attenuator splitters of Type XKA, used for the reduction of fan noise and airregenerated noise in air conditioning systems
- Attenuation effect due to absorption
- Broadband attenuation even in the high frequency range
- Hygiene tested and certified to VDI 6022
- For use in potentially explosive atmospheres (ATEX), zones 1, 2, 21 and 22 (outside)

Special characteristics

- Increased insertion loss even in the highfrequency range
- Up to 30 % lower differential pressure
- Energy efficient and/or space saving due to aerodynamically profiled frame
- Hygiene tested and certified
- Multi-section construction available for large

dimensions

Nominal sizes

- H: 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 mm (intermediate sizes 150 2500 mm in increments of 1 mm)
- Height subdivided: 2501 5000 mm, in increments of 1 mm
- L: 500, 750, 1000, 1250, 1500 mm (intermediate sizes 501 – 2500 mm in increments of 1 mm)
- Length subdivided: 2501 3000 mm in increments of 1 mm
- Undivided construction: H + L 4000 mm max., H and L 1500 mm max. (if one dimension is 1500 mm, the other one must not exceed 1500 mm)

Description

Variants

- XKA100: Splitter thickness 100 mm
- XKA200: Splitter thickness 200 mm
- XKA230: Splitter thickness 230 mm
- XKA300: Splitter thickness 300 mm

Construction

Splitter surface

- F: Glass fibre fabric
- L: Glass fibre fabric and additional perforated sheet metal to protect the absorption material

Parts and characteristics

- Aerodynamically profiled frame
- Absorption material to reduce air-regenerated noise by absorption

Useful additions

 U-sheets/clamp sheets to join subdivided attenuator splitters

Construction features

- Aerodynamically profiled splitter frame (radius > 15 mm) that enables a reduction of turbulence both upstream and downstream; frame with grooves for increased rigidity
- Frame edges are folded to protect the infill
- Operating temperature up to 100 °C (construction with perforated sheet metal up to 300 °C for 8h max.)

Materials and surfaces

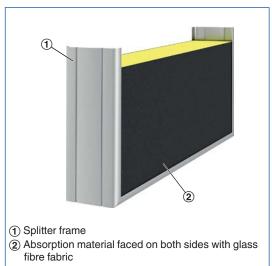
- Splitter frames made of galvanised sheet steel
- Absorption material is mineral wool

Mineral wool

- To EN 13501, fire rating class A1, noncombustible
- RAL quality mark RAL-GZ 388
- Biosoluble and hence hygienically safe according to the German TRGS 905 (Technical Rules for Hazardous Substances) and EU directive 97/69/EC
- Faced with glass fibre fabric as a protection against erosion through airflow velocities of up to 20 m/s
- Inert to fungal and bacterial growth

Standards and guidelines

- Insertion loss and sound power level of airregenerated noise tested to ISO 7235
- Meets the hygiene requirements of VDI 6022,
 DIN 1946, parts 1 and 2 as well as of VDI 3803
- Directive 94/9/EC: Equipment and protective systems intended for use in potentially explosive atmospheres


Maintenance

Maintenance-free as construction and materials are not subject to wear

Functional description

The attenuation effect of the XKA splitters is due to absorption.

Schematic illustration of XKA

The splitters have a mineral wool infill as absorption material.

Splitter thickness	100, 200, 230, 300 mm
Nominal sizes	$150 \times 500 \text{ mm} - 1499 \times 2500, 2500 \times 1499 \text{ or } 1500 \times 1500 \text{ mm}$
Height subdivided	2501 – 5000 mm
Length subdivided	1501 – 3000 mm
Intermediate sizes	In increments of 1 mm
Operating temperature	Up to 100 °C

The length (L) of sound attenuator splitters refers to the airflow direction

Quick sizing tables provide a good overview of the insertion loss and of differential pressures for different airway widths and airflow velocities. Intermediate values can be calculated with our Easy Product Finder design programme. The sound power levels L_{WA} apply to sound attenuators with a cross-sectional area (B \times H) of 1 \mbox{m}^2 .

The differential pressures apply to sound attenuators with a height of 1 m.

MSA, MKA, XSA, XKA, RKA, air-regenerated noise

V _s	m/s	4	6	8	10	12		16	18	20
L _{WA}	dB(A)	21	31	38	43	48	51	55	58	60

XKA100, XSA100, insertion loss and differential pressure

				Centr	e frequ	ency f _r	" [Hz]			v _s [m/s]			
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20	
					D	е				Δp _{st}			
mm	mm				Н	z				Pa			
500	40	3	5	10	18	37	45	31	23	5	32	>80	
1000	40	4	8	19	29	46	50	39	32	7	44	>80	
1000	60	4	7	16	26	42	47	34	26	5	33	>80	
	40	6	11	27	39	50	50	47	40	9	55	>80	
1500	60	6	9	23	35	50	50	42	34	6	38	>80	
	100	5	5	14	27	44	46	31	20	5	29	>80	
	40	7	14	36	50	50	50	50	49	11	66	>80	
2000	60	7	12	30	45	50	50	50	41	7	44	>80	
2000	100	6	7	19	34	50	50	39	26	5	32	>80	
	200	3	4	11	24	38	24	14	10	4	25	>80	
	40	9	18	44	50	50	50	50	50	12	77	>80	
2500	60	8	14	37	50	50	50	50	49	8	50	>80	
2500	100	7	8	23	42	50	50	48	32	6	34	>80	
	200	4	5	13	29	46	30	17	12	4	26	>80	
	40	10	21	50	50	50	50	50	50	14	>80	>80	
3000	60	10	17	44	50	50	50	50	50	9	56	>80	
3000	100	8	9	28	49	50	50	50	37	6	37	>80	
	200	5	6	16	34	50	50	20	13	4	27	>80	

XKA200, XSA200, insertion loss and differential pressure

				Centr	e frequ	ency f	_n [Hz]			١	/ _s [m/s]			
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20		
					D	e				Δp _{st}				
mm	mm				Н	z				Pa				
500	50	2	12	18	31	44	42	29	23	9	58	>80		
	50	6	14	22	44	50	50	36	27	11	67	>80		
1000	100	3	8	15	32	46	38	23	16	6	35	>80		
	200	2	5	11	22	25	18	11	7	3	21	>80		
	50	8	20	31	50	50	50	48	33	12	75	>80		
1500	100	5	12	22	47	50	50	31	20	6	40	>80		
1300	200	3	7	15	31	35	24	14	8	4	23	>80		
	400	2	4	11	18	15	9	6	5	2	15	61		
	50	10	27	40	50	50	50	50	39	13	>80	>80		
2000	100	6	16	28	50	50	50	39	24	7	44	>80		
2000	200	4	9	20	41	45	30	17	10	4	25	>80		
	400	2	5	14	24	19	11	7	6	3	17	67		
	50	13	34	47	50	50	50	50	45	15	>80	>80		
2500	100	7	21	34	50	50	50	45	27	8	48	>80		
2300	200	4	11	23	50	50	36	19	11	4	28	>80		
	400	3	7	16	29	21	13	8	6	3	18	72		
	50	16	42	50	50	50	50	50	50	16	>80	>80		
3000	100	8	26	39	50	50	50	50	31	8	53	>80		
0000	200	5	13	27	50	50	41	21	12	5	30	>80		
	400	3	8	18	34	24	14	9	7	3	19	77		

XKA230, XSA230, insertion loss and differential pressure

				Centr	e frequ	iency f	m [Hz]			v _s [m/s]			
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20	
					0) _e				Δp _{st}			
mm	mm	Hz							Pa				
500	60	4	7	12	25	34	25	19	18	9	57	>80	
	60	5	12	20	35	48	40	27	21	10	66	>80	
1000	115	4	8	16	27	35	27	18	15	6	35	>80	
	230	3	5	12	18	20	14	10	9	3	20	>80	
	60	6	16	27	46	50	50	35	25	12	74	>80	
1500	115	5	12	22	36	46	37	24	18	6	40	>80	
1300	230	3	7	16	25	28	19	12	11	4	23	>80	
	460	2	2	11	15	10	1	0	3	2	15	59	
	60	7	21	35	50	50	50	43	29	13	>80	>80	
2000	115	5	15	28	45	50	47	29	21	7	44	>80	
2000	230	4	9	21	32	36	24	14	13	4	25	>80	
	460	3	4	14	20	15	1	0	4	3	16	64	
	60	8	25	43	50	50	50	50	33	15	>80	>80	
2500	115	6	19	35	50	50	50	34	24	8	48	>80	
2300	230	5	12	26	40	43	28	17	14	4	27	>80	
	460	4	5	18	25	19	0	0	5	3	17	69	
	60	9	30	50	50	50	50	50	37	16	>80	>80	
3000	115	7	22	41	50	50	50	40	27	8	52	>80	
0000	230	6	14	31	47	50	33	19	16	5	29	>80	
	460	5	6	21	31	23	0	0	5	3	19	74	

XKA300, XSA300, insertion loss and differential pressure

				Centr	e frequ	ency f	ո [Hz]			v _s [m/s]				
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20		
					D	e				Δp _{st}				
mm	mm				Н	z					Pa			
500	75	4	7	17	25	34	32	22	18	10	63	>80		
500	150	2	5	11	16	19	17	12	9	5	33	>80		
	75	6	15	24	42	48	50	33	26	11	71	>80		
1000	150	3	9	18	27	34	28	17	11	6	36	>80		
	300	1	6	11	15	16	13	8	7	3	21	>80		
	75	8	20	33	50	50	50	44	30	13	79	>80		
1500	150	3	14	26	38	46	39	21	13	6	39	>80		
1500	300	2	8	16	21	21	17	10	8	4	22	>80		
	600	1	6	11	12	9	6	4	5	2	15	60		
	75	10	25	42	50	50	50	50	34	14	>80	>80		
2000	150	4	18	33	48	50	50	26	16	7	42	>80		
2000	300	2	11	20	26	26	21	12	9	4	23	>80		
	600	1	7	14	16	11	7	5	5	2	15	60		
	75	13	30	50	50	50	50	50	38	15	>80	>80		
2500	150	5	23	40	50	50	50	30	18	7	45	>80		
2000	300	3	14	25	32	32	25	13	10	4	25	>80		
	600	1	9	17	19	13	7	5	6	3	16	64		
3000	75	15	35	50	50	50	50	50	42	16	>80	>80		
	150	6	28	48	50	50	50	35	20	8	48	>80		
	300	3	17	30	38	37	29	15	11	4	26	>80		
	600	2	11	21	23	14	8	5	6	3	17	68		

This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design programme.

Sound attenuator splitters used for the reduction of fan noise and air-regenerated noise in air conditioning systems. Attenuation effect due to absorption. Energy-saving as well as hygiene tested and certified.

Installation kit consists of an aerodynamically profiled frame (radius > 15 mm) and absorption material.

Frame edges are folded to protect the sound absorbing infill.

Insertion loss and sound power level of the airregenerated noise tested to ISO 7235. Meets the hygiene requirements of VDI 6022, DIN 1946, parts 2 and 4, as well as of VDI 3803.

Special characteristics

- Increased insertion loss even in the highfrequency range
- Up to 30 % lower differential pressure
- Energy efficient and/or space saving due to aerodynamically profiled frame
- Hygiene tested and certified
- Multi-section construction available for large dimensions

Materials and surfaces

- Splitter frames made of galvanised sheet steel
- Absorption material is mineral wool

Mineral wool

- To EN 13501, fire rating class A1, noncombustible
- RAL quality mark RAL-GZ 388
- Biosoluble and hence hygienically safe according to the German TRGS 905 (Technical Rules for Hazardous Substances) and EU directive 97/69/EC

- Faced with glass fibre fabric as a protection against erosion through airflow velocities of up to 20 m/s
- Inert to fungal and bacterial growth

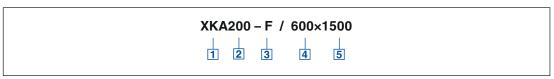
Construction

Splitter surface

- F: Glass fibre fabric
- L: Glass fibre fabric and additional perforated sheet metal to protect the absorption material

Technical data

- Splitter thickness: 100, 200, 230, 300 mm
- Nominal sizes: 150 × 500 mm 1499 × 2500, 2500 × 1499 or 1500 × 1500 mm
- Height subdivided: up to 5000 mm
- Length subdivided: up to 3000 mm
- Intermediate sizes: in increments of 1 mm
- Operating temperature: up to 100 °C


The length (L) of splitter attenuators refers to the airflow direction.

Sizing data

_	В
	[mm]
-	H
	[mm]
-	L (in airflow direction)
	[mm]
-	Ÿ
	[m ³ /h]
-	D _e at 250 Hz
	[dB]
-	Δp _{st}
	[Pa]

The length (L) of sound attenuator splitters and splitter attenuators refers to the airflow direction. Remember this with regard to vertical ducting.

XKA

1 Type

XKA Sound attenuator splitter

4 Height H [mm]

5 Length L in airflow direction [mm]

2 Splitter thickness [mm]

100

200

230

300

3 Splitter surface

F Glass fibre fabric

L Glass fibre fabric under perforated sheet

Order example: XKA100-L/1500×1500

Splitter thickness 100 mm

Splitter surface Glass fibre fabric and perforated sheet metal

Height 1500 mm

Length 1500 mm

Fitting accessories to join subdivided attenuator splitters

1 Part

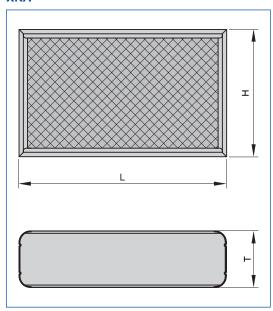
SD-KBLECH Clamp sheet for MKA, XKA,

RKA200

SD-KAP100 U-sheet for MKA100, XKA100 **SD-KAP200** U-sheet for MKA200, XKA200,

RKA200

SD-KAP230 U-sheet for MKA230, XKA230


SD-KAP300 U-sheet for XKA300

Dimensions and weight

- H: 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 mm (intermediate sizes 150 2500 mm in increments of 1 mm)
- Height subdivided: 2501 5000 mm, in increments of 1 mm
- L: 500, 750, 1000, 1250, 1500 mm (intermediate sizes 501 – 2500 mm in increments of 1 mm)
- Length subdivided: 2501 3000 mm in increments of 1 mm
- Undivided construction: H + L 4000 mm max., H and L 1500 mm max. (if one dimension is 1500 mm, the other one must not exceed 1500 mm)

The total weight of a splitter sound attenuator is the combined weight of the casing (with standard flange or angle section frame) and all splitters. The total weight for intermediate sizes can be generated with our Easy Product Finder design programme.

XKA

XKA100, weights

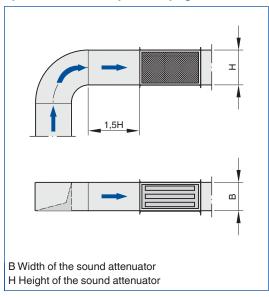
	(alass f	ibre fat	oric (-F)	Glass fibre fabric and perforated sheet meta							
Н						L [mn	n]						
	500	750	1000	1250	1500	500	750	1000	1250	1500			
mm		kg											
300	2	2	3	4	4	3	4	5	6	7			
600	3	4	4	5	6	5	7	9	11	13			
900	4	5	6	7	8	7	10	12	15	18			
1200	5	6	7	9	10	9	12	16	20	23			
1500	5	7	9	10	12	11	15	20	24	28			
1800	7	9	11	14	16	13	19	24	30	35			

XKA200, weights

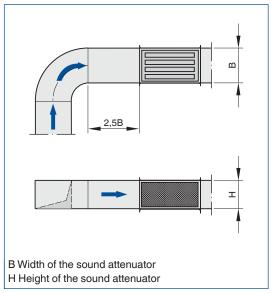
	(Glass fi	ibre fat	oric (-F)	Glass fibre fabric and perforated sheet metal (-L)							
Н						L [mn	n]						
	500	750	1000	1250	1500	500	750	1000	1250	1500			
mm		kg											
300	3	4	5	6	7	4	6	7	9	10			
600	5	6	8	9	11	7	10	12	15	18			
900	6	8	11	13	15	10	13	17	21	25			
1200	8	11	13	16	19	12	17	22	27	32			
1500	10	13	16	19	22	15	21	27	33	39			
1800	12	16	21	25	29	19	26	34	41	49			

XKA230, weights

	(3lass fi	ibre fat	oric (-F)	Glass fibr	e fabric ar	nd perfora	ted sheet	metal (-L)		
Н	L [mm]											
	500	750	1000	1250	1500	500	750	1000	1250	1500		
mm		kg										
300	3	5	6	7	8	4	6	8	10	11		
600	5	7	9	11	12	7	10	13	16	19		
900	7	10	12	14	17	10	14	19	23	27		
1200	9	12	15	18	21	13	19	24	29	34		
1500	11	15	18	22	25	16	23	29	35	42		
1800	14	19	24	28	33	20	29	37	45	53		

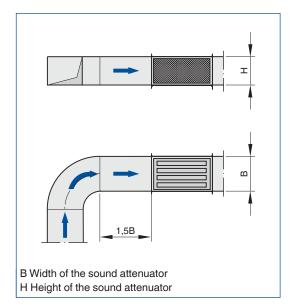

XKA300, weights

	Glass fibre fabric (-F) Glass fibre fabric and perforated sheet metal (-												
Н						L [mn	n]						
	500	750	1000	1250	1500	500	750	1000	1250	1500			
mm		kg											
300	4	6	7	9	10	5	7	9	11	14			
600	7	9	11	14	16	9	12	16	19	22			
900	9	12	15	18	21	12	17	22	27	31			
1200	12	15	19	23	27	16	22	28	34	40			
1500	14	19	23	28	33	19	27	34	42	49			
1800	18	24	30	36	42	24	34	43	53	62			


Installation and commissioning

- Splitters are supplied as ready-to-install kits
- Follow the installation information and comply with the general codes of good practice in order to achieve the given performance data
- Up to height H = 1200 mm: any installation orientation, but we recommend upright installation of splitters
- From height H = 1201 mm: upright installation only
- The length (L) of sound attenuator splitters and splitter sound attenuators refers to the airflow direction; be sure to note how width, height and length are defined, particularly in case of a vertical airflow
- Installation in ducts outside of closed rooms requires sufficient protection against the effects of weather

Upstream conditions after bends, junctions or a narrowing or widening of the duct, vertical upstream section, splitters upright

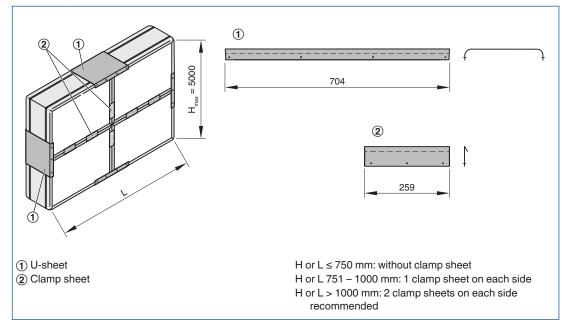


Upstream conditions after bends, junctions or a narrowing or widening of the duct, vertical upstream section, splitters horizontal



Horizontal installation only for splitters up to height 1200 mm

Upstream conditions after bends, junctions or a narrowing or widening of the duct, horizontal upstream section, splitters upright



Upstream conditions after bends, junctions or a narrowing or widening of the duct, horizontal upstream section, splitters horizontal

Horizontal installation only for splitters up to height 1200 mm

Assembly of subdivided splitters

Basic information and nomenclature

Principal dimensions

ØD [mm]

Outer diameter of the spigot

$ØD_3$ [mm]

Outer diameter of circular silencers

L [mm]

Length of attenuator/silencer including spigot (in airflow direction)

L₁ [mm]

Length of acoustic cladding and acoustically effective length

B [mm]

Attenuator width and duct width (upright splitters)

H [mm]

Attenuator height and duct height (upright splitters)

T [mm]

Splitter thickness

S [mm]

Airway width

n[]

Number of flange screw holes

m [kg]

Weight

Nomenclature

f_m [Hz]

Octave band centre frequency

L_{WA} [dB(A)]

A-weighted sound power level of air-regenerated noise

D_e [dB]

Insertion loss

\dot{V} [m³/h] and [l/s]

Volume flow rate

Δp_{st} [Pa]

Static differential pressure

All sound power levels are based on 1 pW.

All values were measured in a TROX lab and to EN ISO 7235. Intermediate values may be achieved by interpolation.

Lab measurements exceeding 50 dB are indicated as 50 dB, in line with common practice.