VVS-Regelgeräte Serie TVRK

Für kontaminierte Luft

Runde Volumenstrom-Regelgeräte aus Kunststoff für Abluftsysteme mit variablen Volumenströmen, die aggressive Medien abführen

- Gehäuse und Stellklappe aus schwer entflammbarem Polypropylen
- Differenzdrucksensor zu Reinigungszwecken einfach herausziehbar
- Geeignet für die Volumenstrom-, Raum- oder Kanaldruckregelung
- Elektronische Regelkomponenten für unterschiedliche Anwendungen (Universal und LABCONTROL)
- Geeignet für Luftgeschwindigkeiten bis 13 m/s
- Leckluftstrom bei geschlossener Regelklappe nach EN 1751, Klasse 3
- Gehäuse-Leckluftstrom nach EN 1751, Klasse B

- Beidseitig mit Flansch
- Beidseitig mit Gegenflansch
- Rohrschalldämpfer aus Kunststoff Serie CAK zur Reduzierung von Strömungsgeräuschen

Einfache Reinigung der Sensorrohre

Variante mit Flansch

Geprüft nach VDI 6022

Serie		Seite
TVRK	Allgemeine Informationen	TVRK – 2
	Funktion	TVRK – 3
	Technische Daten	TVRK – 4
	Schnellauslegung	TVRK – 5
	Ausschreibungstext	TVRK – 6
	Bestellschlüssel	TVRK – 7
	Varianten	TVRK – 11
	Anbauteile	TVRK – 12
	Abmessungen und Gewichte	TVRK – 14
	Einbaudetails	TVRK – 17
	Grundlagen und Definitionen	TVRK – 20

Anwendung

Anwendung

- Runde VARYCONTROL VVS-Regelgeräte aus Kunststoff der Serie TVRK vorzugsweise zur Abluftstromregelung in variablen Volumenstromsystemen
- Volumenstromregelung im geschlossenen Regelkreis mit Hilfsenergie
- Für kontaminierte Luft geeignet
- Absperrung durch kundenseitige Schaltung

Besondere Merkmale

- Integrierter Differenzdrucksensor, zur Kontrolle herausziehbar, mit Messbohrungen 3 mm (unempfindlich gegen Verschmutzung)
- Werkseitige Einstellung oder Programmierung und lufttechnische Prüfung
- Volumenstrommessung und -verstellung am Gerät nachträglich möglich, eventuell separates Einstellgerät erforderlich

Nenngrößen

- 125, 160, 200, 250, 315, 400

Beschreibung

Varianten

- TVRK: VVS-Regelgerät
- TVRK-FL: VVS-Regelgerät beidseitig mit Flansch

Bauteile und Eigenschaften

- Inbetriebnahmebereites Gerät, bestehend aus mechanischen Bauteilen und Regelkomponenten
- Mittelwert bildender Differenzdrucksensor zur Luftstrommessung, zu Reinigungszwecken herausziehbar
- Regelklappe
- Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet
- Jedes Gerät werkseitig auf speziellem lufttechnischen Prüfstand geprüft
- Dokumentation der Daten mit einer Prüfplakette oder einer Volumenstromskala auf dem Gerät
- Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D)

Anbauteile

- Universalregler: Regler,
 Differenzdrucktransmitter und Stellantriebe für spezielle Anwendungen
- LABCONTROL: Regelkomponenten für Luft-Management-Systeme

Zubehör

- Beidseitig mit Gegenflansch und Dichtung

Ergänzende Produkte

Rohrschalldämpfer aus Kunststoff Serie CAK

für hohe akustische Anforderungen

Konstruktionsmerkmale

- Rundes Gehäuse
- Rohrstutzen passend für Luftleitungen nach DIN 8077
- Beidseitig gleicher Anschlussdurchmesser
- Position der Regelklappe von außen an der Achse erkennbar

Materialien und Oberflächen

- Gehäuse und Regelklappe aus schwer entflammbarem Polypropylen (PPs)
- Differenzdrucksensor und Gleitlager aus Polypropylen (PP)
- Regelklappendichtung aus Chloropren-Kautschuk (CR)

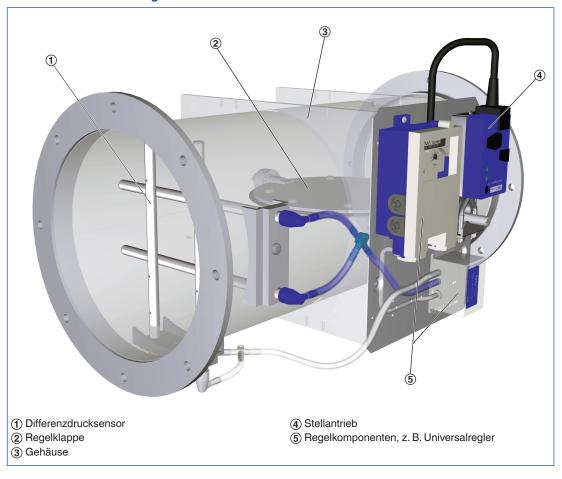
Normen und Richtlinien

- Hygieneanforderungen nach VDI 6022
- Leckluftstrom bei geschlossener Regelklappe nach EN 1751, Klasse 3
- Erfüllt die allgemeinen Anforderungen der DIN 1946, Teil 4 an den zulässigen Leckluftstrom bei geschlossener Regelklappe
- Gehäuse-Leckluftstrom nach EN 1751, Klasse B

Instandhaltung

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
- Nullpunktabgleich des statischen Differenzdrucktransmitters einmal j\u00e4hrlich empfohlen

Funktionsbeschreibung


Zur Messung des Volumenstromes enthält das VVS-Regelgerät einen Differenzdrucksensor. Die Regelkomponenten (Anbauteile) umfassen einen Differenzdrucktransmitter zur Umformung des Differenzdrucks (Wirkdruck) in ein elektrisches Signal, einen Regler und einen Stellantrieb, als Einzelkomponenten (Universal

oder LABCONTROL).

Der Sollwert kommt in den meisten Anwendungsfällen von einem externen Sollwertgeber.

Der Regler vergleicht den Istwert mit dem Sollwert und verändert bei Abweichungen das Führungssignal des Stellantriebes.

Schematische Darstellung TVRK

Nenngrößen	125 – 400 mm
Volumenstrombereich	25 – 1680 l/s oder 90 – 6048 m³/h
Volumenstromregelbereich	Ca. 17 – 100 % vom Nennvolumenstrom
Mindestdruckdifferenz	5 – 90 Pa
Maximal zulässige Druckdifferenz	1000 Pa
Betriebstemperatur	10 – 50 °C

Volumenstrombereiche

Die Mindestdruckdifferenz der VVS-Regelgeräte ist eine wichtige Größe zur Planung des Kanalnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung. Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten ein ausreichender Kanaldruck ansteht. Der Messpunkt oder die Messpunkte für die Drehzahlsteuerung des Ventilators sind dementsprechend auszuwählen. Die Volumenstrombereiche von VVS-

Regelgeräten sind von der Nenngröße und von der verwendeten Regelkomponente (Anbauteil) abhängig. Die dargestellten Tabellenwerte sind die Minimal- und Maximalwerte des VVS-Regelgerätes. Für bestimmte Regelkomponenten gelten eingeschränkte Bereiche. Dies gilt insbesondere für Regelkomponenten mit statischem Differenzdrucktransmitter. Volumenstrombereiche für alle Regelkomponenten enthält das Auslegungsprogramm Easy Product Finder.

TVRK, Volumenstrombereiche und Mindest-Druckdifferenzen

	1	2	3	4			ΔV		
Nonnarößo	/	Ÿ		Δp _{st min}					
Nemigrobe	l/s	m³/h	Pa	Pa	Pa	Pa	± %		
	25	90	5	5	5	5	9		
125	60	216	15	20	20	20	7		
Nenngröße 125 160 200	105	378	45	50	55	60	6		
	150	540	90	100	110	115	5		
	40	144	5	5	5	5	9		
160	80	288	10	10	10	15	8		
	145	522	30	30	35	35	7		
	250	900	80	90	95	100	5		
	65	234	5	5	5	5	9		
200	180	648	15	15	20	20	7		
200	310	1116	45	45	50	50	5		
	405 95	1458 342	70	75	80	85	5		
	95 270	972	5 10	5 15	5 15	5 15	9		
250	470	1692	30	35	35	40	5		
	615	2214	50	55 55	60	65	5		
	155	558	5	55	5	5	9		
	425	1530	5	10	10	10	7		
315	740	2664	5	25	25	30	6		
	1030	3708	5	45	50	50	5		
	255	918	5	5	5	5	9		
	715	2574	10	10	10	10	7		
400	1250	4500	25	25	25	30	6		
	1680	6048	40	45	45	50	5		

- 1 TVRK
- (2) TVRK mit Rohrschalldämpfer CS/CF, Packungsdicke 50 mm, Länge 500 mm
- 3 TVRK mit Rohrschalldämpfer CS/CF, Packungsdicke 50 mm, Länge 1000 mm
- (4) TVRK mit Rohrschalldämpfer CS/CF, Packungsdicke 50 mm, Länge 1500 mm

Die Schnellauslegung gibt einen guten Überblick über die zu erwartenden Schalldruckpegel im Raum. Ungefähre Zwischenwerte können interpoliert werden. Zu exakten Zwischenwerten und Spektraldaten führt die Auslegung mit unserem Auslegungsprogramm Easy Product Finder.

Die Auswahl der Nenngröße erfolgt zunächst nach den gegebenen Volumenströmen \dot{V}_{min} und \dot{V}_{max} . In der Schnellauslegung sind praxisgerechte Dämpfungswerte berücksichtigt. Liegt der Schalldruckpegel über dem zulässigen Wert, sind ein größeres Volumenstrom-Regelgerät und/oder ein Schalldämpfer erforderlich.

TVRK, Schalldruckpegel bei Druckdifferenz 150 Pa

				Strömungs	sgeräusch		Abstrahlgeräusch
Nenngröße	Ÿ	Ÿ	1	2	3	4	1
Nenngröße 			L _{PA}		L _{PA1}		L _{PA2}
	l/s	m³/h		dB			dB(A)]
	25	90	34	19	<15	<15	17
125	60	216	44	30	25	20	27
120	105	378	51	38	32	28	32
	150	540	55	41	35	31	37
	40	144	36	23	18	<15	21
160	80	288	42	31	27	23	28
100	145	522	49	37	34	30	33
	250	900	53	41	38	34	40
	65	234	44	33	28	25	33
200	180	648	44	33	28	25	34
	310	1116	43	33	29	26	35
	405	1458	41	33	30	29	35
	95	342	39	29	23	19	28
250	270	972	45	35	31	27	35
	470	1692	44	35	30	27	37
	615	2214	44	35	31	29	39
	155	558	39	29	24	21	29
315	425	1530	46	37	33	29	40
	740	2664	50	41	37	33	45
	1030	3708	53	44	40	37	50
	255	918	37	29	25	22	30
400	715	2574	44	37	33	30	40
	1250	4500	49	42	38	36	46
	1680	6048	51	44	40	38	50

¹⁾ TVRK

² TVRK mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 500 mm

③ TVRK mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 1000 mm

⁽⁴⁾ TVRK mit Rohrschalldämpfer CAK, Packungsdicke 50 mm, Länge 1500 mm

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

VVS-Regelgeräte aus Kunststoff PPs in runder Bauform für variable und konstante Volumenstromsysteme, für Abluft, in sechs Nenngrößen.

Hohe Regelgenauigkeit der eingestellten Volumenströme (auch bei Bogenanschluss mit R = 1D)

Inbetriebnahmebereites Gerät, bestehend aus den mechanischen Bauteilen und den elektronischen Regelkomponenten. Geräte enthalten einen Mittelwert bildenden Differenzdrucksensor zur Volumenstrommessung und eine Regelklappe. Regelkomponenten werkseitig montiert, verschlaucht und verdrahtet. Differenzdrucksensor mit Messbohrungen 3 mm, dadurch unempfindlich gegen Verschmutzung. Rohrstutzen, passend für Luftleitungen nach DIN 8077.

Position der Regelklappe von außen durch die Achsform erkennbar.

Leckluftstrom bei geschlossener Regelklappe nach EN 1751, Klasse 3.

Gehäuse-Leckluftstrom nach EN 1751, Klasse B. Hygieneanforderungen nach VDI 6022

Besondere Merkmale

- Integrierter Differenzdrucksensor, zur Kontrolle herausziehbar, mit Messbohrungen 3 mm (unempfindlich gegen Verschmutzung)
- Werkseitige Einstellung oder Programmierung und lufttechnische Prüfung
- Volumenstrommessung und -verstellung am Gerät nachträglich möglich, eventuell separates Einstellgerät erforderlich

Materialien und Oberflächen

- Gehäuse und Regelklappe aus schwer entflammbarem Polypropylen (PPs)
- Differenzdrucksensor und Gleitlager aus

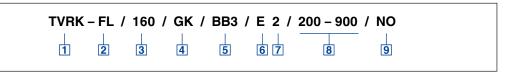
Polypropylen (PP)

 Regelklappendichtung aus Chloropren-Kautschuk (CR)

Technische Daten

- Nenngrößen: 125 400 mm
- Volumenstrombereich: 25 1680 l/s oder 90 – 6048 m³/h
- Volumenstromregelbereich: Ca. 17 100 % vom Nennvolumenstrom
- Mindestdruckdifferenz: 5 90 Pa
- Maximal zulässige Druckdifferenz: 1000 Pa

Anbauteile


Variable Volumenstrom-Regelung mit elektronischem Universalregler zur Aufschaltung einer Führungsgröße und einem Istwertsignal zur Einbindung in Gebäudeleittechnik.

- Versorgungsspannung 24 V AC/DC
- Signalspannungen 0 10 V DC oder 2 – 10 V DC
- Mit externen, potentialfreien Schaltern mögliche Zwangssteuerungen: ZU, AUF, \dot{V}_{min} und \dot{V}_{max}
- Volumenstromregelbereich ca. 17 100 % vom Nennvolumenstrom

Auslegungsdaten

– V	
[m ³ /h]	
– Δp _{st}	
[Pa]	
Strömungsgeräusch	
- L _{PA}	
[dB(A)]	
Abstrahlgeräusch	
_ 1	

[dB(A)]

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Flansch

Keine Eintragung: Ohne

FL Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: Ohne GK Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

Zum Beispiel

BB3 Universalregler mit statischem

Differenzdrucktransmitter

6 Betriebsart

E Einzel

M Master

S Slave

F Festwert

Z Druckregelung Zuluft

A Druckregelung Abluft

7 Signalspannungsbereich

Für das Istwert- und Sollwertsignal

0 - 10 V DC

2 2 - 10 V DC

8 Volumenströme [m³/h oder l/s] Differenzdruck

[Pa]

 $\dot{V}_{min} - \dot{V}_{max} \ zur \ werkseitigen \ Einstellung \\ \Delta p_{min} \ zur \ werkseitigen \ Einstellung$

(Betriebsart A, Z)

9 Klappenstellung

Nur Federrücklaufantriebe

NO Stromlos AUF NC Stromlos ZU

Bestellbeispiel: TVRK/160/BB3/E2/200-900 m³/h

Nenngröße160 mmAnbauteilUniversalregler mit statischem DifferenzdrucktransmitterBetriebsartEinzelSignalspannungsbereich2 – 10 V DCVolumenstrom200 – 900 m³/h

TVRK mit EASYLAB für Raumregelung und Einzelregelung

TVRK - FL / 160 / GK / ELAB / RE / ULZ / LAB / ...

1 2 3 4 5 6 8 9 10

TVRK - FL / 160 / GK / ELAB / EC - E0 / ULZ / ...

1 2 3 4 5 6 7 8 10

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Flansch

Keine Eintragung: Ohne Flansch beidseitig

3 Nenngröße [mm]

125

FL

160

200

250 315

010

400

4 Zubehör

Keine Eintragung: Ohne GK Gegenflansch beidseitig

5 Anbauteil (Regelkomponente)

ELAB EASYLAB Regler TCU3 mit schnelllaufendem Stellantrieb

6 Gerätefunktion

Raumregelung

RE Abluftregelung (Room Exhaust)
PC Druckregelung (Pressure Control)

Einzelregelung

EC Abluftregler

7 Externe Volumenstromvorgabe

Nur für Einzelregelung

E0 Spannungssignal 0 – 10 V DC

E2 Spannungssignal 2 – 10 V DC

2P Kundenseitige Schaltkontakte für 2 Schaltstufen

3P Kundenseitige Schaltkontakte für 3 Schaltstufen

F Volumenstrom Festwert, ohne Aufschaltung

8 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung Keine Eintragung: 24 V AC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung

Option 2: Kommunikationsschnittstelle

Keine Eintragung: Ohne

L EM-LON für LonWorks FTT-10A

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

vvenserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne

Keine Eintragung: Onne

Z EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich

9 Zusatzfunktionen

Nur für Gerätefunktion Raumregelung Raum-Management-Funktion deaktiviert

LAB Abluftgeführtes System (Laboratorien)

LR Zuluftgeführtes System (Reinräume)
Raum-Management-Funktion aktiviert

LAB-RMF Abluftgeführtes System
CLR-RMF Zuluftgeführtes System

10 Betriebswerte [m³/h oder l/s, Pa]

Für Gerätefunktion Raumregelung mit

Zusatzfunktion RMF

Gesamtabluft/-zuluft Raum

V₁: Standardbetrieb

V₂: Reduzierter Betrieb

V₃: Erhöhter Betrieb

V₄: Konstante Zuluft

V
₅: Konstante Abluft

V₀: Differenz Zu-/Abluft

Δp_{soll}: Solldruck (nur bei Druckregelung)

Für Gerätefunktion Einzelregelung

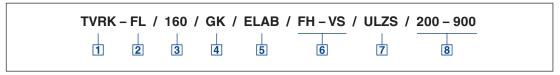
E0, E2: $\dot{V}_{min} / \dot{V}_{max}$

2P: \dot{V}_1 / \dot{V}_2

3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$

F: V₁

Ergänzende Produkte


Raumbedieneinheit (nur für Raumregelung)

BE-LCD-01 40-Zeichen-Display

Bestellbeispiel: TVRK/160/BB3/E2/200-900 m³/h

Nenngröße160 mmAnbauteilUniversalregler mit statischem DifferenzdrucktransmitterBetriebsartEinzelSignalspannungsbereich2 – 10 V DCVolumenstrom200 – 900 m³/h

TVRK mit EASYLAB zur Laborabzugsregelung

1 Serie

TVRK VVS-Regelgerät, Kunststoff

2 Flansch

Keine Eintragung: Ohne **FL** Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250

315

400

4 Zubehör

Keine Eintragung: Ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3 mit schnelllaufendem Stellantrieb

6 Gerätefunktion

Mit Einströmsensor

FH-VS Regelung Einströmgeschwindigkeit Mit Frontschieber-Wegsensor

FH-DS Lineare Regelstrategie

FH-DV Sicherheitsoptimierte Regelstrategie Mit Schaltstufen für kundenseitige Schaltkontakte

FH-2P 2 Schaltstufen

FH-3P 3 Schaltstufen

Ohne Aufschaltung

FH-F Volumenstrom-Festwert

7 Erweiterungsmodule

Option 1: Versorgungsspannung Keine Eintragung: 24 V AC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung

Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne

L EM-LON für LonWorks FTT-10A

B EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne

Z EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich

> Option 4: Beleuchtungsschaltung Keine Eintragung: Ohne

S EM-LIGHT Anschlussbuchse für die Beleuchtung, schaltbar an der Bedieneinheit (nur in Kombination mit EM-TRF oder EM-TRF-USV)

8 Betriebswerte [m³/h oder l/s]

Abhängig von der Gerätefunktion

 $\begin{array}{lll} \text{VS: } \dot{V}_{\text{min}} - \dot{V}_{\text{max}} \\ \text{DS: } \dot{V}_{\text{min}} - \dot{V}_{\text{max}} \\ \text{DV: } \dot{V}_{\text{min}} - \dot{V}_{\text{max}} \\ \text{2P: } \dot{V}_{1} / \dot{V}_{2} \\ \text{3P: } \dot{V}_{1} / \dot{V}_{2} / \dot{V}_{3} \\ \text{F: } \dot{V}_{1} \end{array}$

Ergänzende Produkte

Bedieneinheit für Laborabzugsregler zur Funktionsanzeige der Regelung nach EN 14175

BE-SEG-** OLED-Display
BE-LCD-01 40-Zeichen-Display

Bestellbeispiel: TVRK/200/ELAB/FH-2P/TZ/600/1200

Nenngröße	200 mm
Anbauteil	EASYLAB Regler TCU3 mit schnelllaufendem Stellantrieb
Gerätefunktion	2 Schaltstufen
Erweiterungsmodule	EM-TRF für 230 V AC, EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich
Betriebswerte	600 – 1200 m³/h

VVS-Regelgerät Variante TVRK

VVS-Regelgerät Variante TVRK-FL

TVRK

- Volumenstrom-Regelgerät zur variablen

Volumenstromregelung

- Rohrstutzen zum Anschluss der Luftleitungen

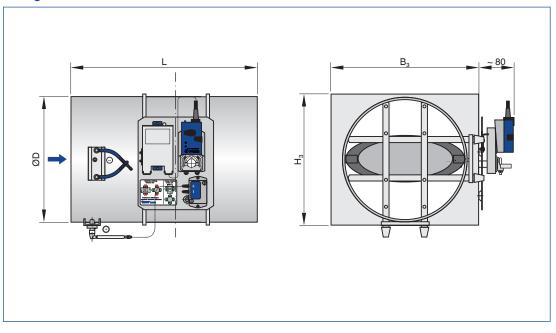
TVRK-FL

 Volumenstrom-Regelgerät zur variablen Volumenstromregelung Flansche zum lösbaren Anschluss der Luftleitungen

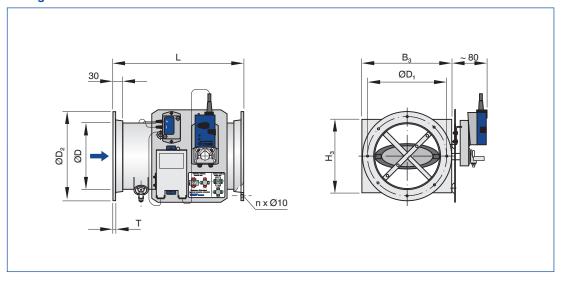
TVRK, Regelkomponenten VARYCONTROL

Bestellschlüssel- detail	Regelgröße	Regler	Differenzdrucktransmitter	Stellantrieb		
Compactregler, statisch						
SA0	Volumenstrom	Compactregler mit SLC-Schnittstelle	Statisch, integriert	Integriert		
SC0	volumenshom	Fabrikat Sauter	Statisch, integriert	Schnelllaufender Stellantrieb, integriert		
Universalregler, statisch						
BP3		Linius va alva alau mit MD Dua Calauittatalla		Stellantrieb		
BPB		Universalregler mit MP-Bus-Schnittstelle Fabrikat TROX/Belimo		Federrücklaufantrieb		
BPG		Tablikat TTON Bellino	Statisch	Schnelllaufender Stellantrieb		
BB3	Volumenstrom	Universalregler		Stellantrieb		
BBB		Fabrikat TROX/Belimo		Federrücklaufantrieb		
XD1		Universalregler	Statisch, integriert	Stellantrieb		
XD3		Fabrikat TROX/Gruner	Statisch, integnen	Federrücklaufantrieb		
BR3				Stellantrieb		
BRB			Statisch, integriert 100 Pa	Federrücklaufantrieb		
BRG		Universalregler mit MP-Bus-Schnittstelle		Schnelllaufender Stellantrieb		
BS3		Fabrikat TROX/Belimo		Stellantrieb		
BSB			Statisch, integriert 600 Pa	Federrücklaufantrieb		
BSG				Schnelllaufender Stellantrieb		
BG3	Differenzdruck		Statisch, integriert 100 Pa	Stellantrieb		
BGB	Dillerenzaruck	Differenzdruckregler	Statisch, integnent 100 Fa	Federrücklaufantrieb		
ВН3		Fabrikat TROX/Belimo	Stational integring 600 Da	Stellantrieb		
ВНВ			Statisch, integriert 600 Pa	Federrücklaufantrieb		
XE1			Stational integring 100 De	Stellantrieb		
XE3		Differenzdruckregler	Statisch, integriert 100 Pa	Federrücklaufantrieb		
XF1		Fabrikat TROX/Gruner	Stational integring 600 Da	Stellantrieb		
XF3			Statisch, integriert 600 Pa	Federrücklaufantrieb		

TVRK, Regelkomponenten LABCONTROL

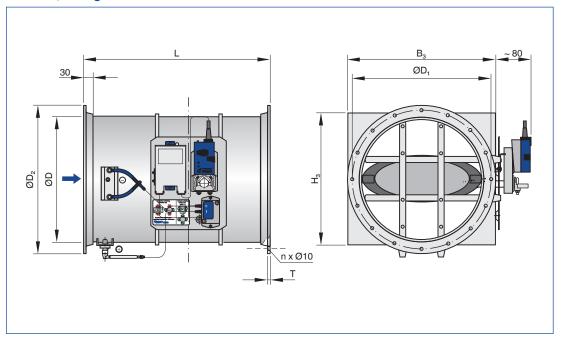

Bestellschlüsseldetail	Regelgröße	Regler	Differenzdrucktransmitter	Stellantrieb
EASYLAB				
ELAB	Raumzuluft Raumabluft Raumdruck Laborabzug Einzelregler	EASYLAB Regler TCU3	Statisch, integriert	Schnelllaufender Stellantrieb

TVRK, Nenngrößen 125 – 200


Nenngröße	ØD	ØD L		H ₃	m	
Neringrobe	mm	mm	mm	mm	kg	
125	125	394	195	145	4,5	
160	160	394	230	180	4,8	
200	200	394	270	220	5,2	

TVRK, Nenngrößen 250 – 400

Nenngröß	MO L B ₃		H ₃	m	
Nemigrobe	mm	mm	mm	mm	kg
250	250	394	320	270	6,4
315	315	594	385	335	8,5
400	400	594	470	420	10,7


TVRK-FL, Nenngrößen 125 – 200

TVRK-FL

Nenngröße	ØD	L	B_3	H ₃	$ØD_1$	$ØD_2$	n	Т	m
Neringrobe	mm	mm	mm	mm	mm	mm		mm	kg
125	125	400	195	145	165	185	8	8	4,7
160	160	400	230	180	200	230	8	8	5,2
200	200	400	270	270	240	270	8	8	5,7

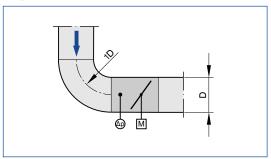
TVRK-FL, Nenngrößen 250 – 400

TVRK-FL

Nenngröße	ØD	L	B_3	H₃	ØD₁	$ØD_2$	n	Т	m
Nemigrobe	mm	mm	mm	mm	mm	mm		mm	kg
250	250	400	320	270	290	320	12	8	7,0
315	315	600	385	335	350	395	12	10	9,4
400	400	600	470	420	445	475	16	10	11,9

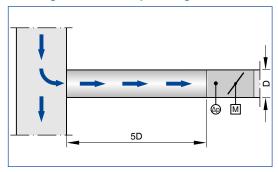
Einbau und Inbetriebnahme

- Einbaulage gemäß Geräteaufkleber beachten

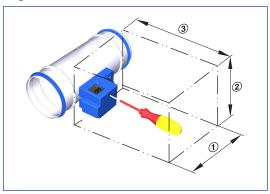

Anströmbedingungen

Die Volumenstromgenauigkeit ΔV gilt für gerade Anströmung. Formstücke wie Bögen, Abzweige oder Querschnittsveränderungen verursachen Turbulenzen, die die Messung beeinflussen können. Bei Ausführung von Luftleitungsanschlüssen, wie z. B. dem Abzweig von einer Hauptleitung, ist die EN 1505 zu beachten. Für manche Einbausituationen sind gerade Anströmlängen erforderlich.

Platzbedarf für Inbetriebnahme und Instandhaltung

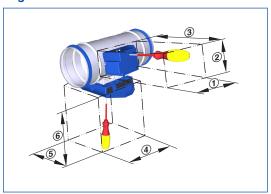

Um die Arbeiten zur Inbetriebnahme und Instandhaltung zu ermöglichen, ausreichenden Bauraum im Bereich der Anbauteile freihalten. Gegebenenfalls sind Revisionsöffnungen in ausreichender Größe erforderlich, sodass die Anbauteile leicht zugänglich sind.

Bogenanschluss


Ein Bogen mit mindestens 1D Krümmungsradius – ohne zusätzliche gerade Anströmlänge vor dem VVS-Regelgerät – hat keinen nennenswerten Einfluss auf die Volumenstromgenauigkeit.

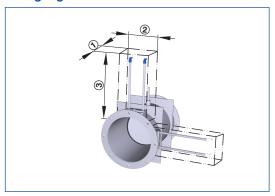
Abzweig von einer Hauptleitung

Das Abzweigen einer Strömung von einer Hauptleitung verursacht starke Turbulenzen. Die angegebene Volumenstromgenauigkeit ΔV ist nur mit mindestens 5D gerader Anströmlänge zu erreichen. Kürzere Anströmlängen sind mit einem Lochblech in der Abzweigleitung vor dem VVS-Regelgerät möglich. Direkter Anschluss, auch mit Lochblech, kann zu instabiler Regelung führen.


Zugänglichkeit der Anbauteile, einseitig angebaut

Platzbedarf bei einseitigem Anbau

Anbauteile	①	2	3		
	mm				
VARYCONTROL					
Universalregler	300	320	300		


Zugänglichkeit der Anbauteile, zweiseitig angebaut

Platzbedarf bei zweiseitigem Anbau

Anbauteile	1	2	3	4	⑤	6
Alibautelle	mm					
LABCONTROL						
EASYLAB	300	250	300	350	350	400

Zugänglichkeit der Sensorrohre zur Reinigung

Platzbedarf zur Reinigung der Sensorrohre

Nenngröße	①	2	3		
	mm				
125 – 200	100	100	D		
250 – 400	100	160	D		

D: Gehäusedurchmesser

Grundlagen und Definitionen

Hauptabmessungen

ØD [mm]

Regelgeräte aus Stahlblech: Außendurchmesser des Anschlussstutzens

Regelgeräte aus Kunststoff: Innendurchmesser des Anschlussstutzens

$\emptyset D_1$ [mm]

Lochkreisdurchmesser von Flanschen

$ØD_2$ [mm]

Außendurchmesser von Flanschen

$ØD_4$ [mm]

Innendurchmesser der Schraubenlöcher von Flanschen

L [mm]

Gerätelänge einschließlich Anschlussstutzen

L₁ [mm]

Gehäuse- oder Dämmschalenlänge

B [mm]

Breite der Luftleitung

B₁ [mm]

Lochabstand im Luftleitungsprofil (Breite)

B₂ [mm]

Außenabmessung des Luftleitungsprofils (Breite)

B_3 [mm]

Gerätebreite

H [mm]

Höhe der Luftleitung

H₁ [mm]

Lochabstand im Luftleitungsprofil (Höhe)

H_2 [mm]

Außenabmessung des Luftleitungsprofils (Höhe)

H_3 [mm]

Gerätehöhe

n[]

Anzahl Schraubenlöcher von Flanschen

T [mm]

Flanschdicke

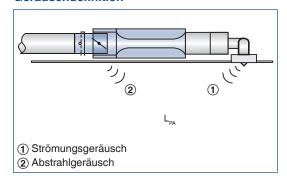
m [kg]

Gerätegewicht (Masse) einschließlich der minimal notwendigen Anbauteile (z. B. Compactregler)

Akustische Daten

f... [Hz

Mittenfrequenz des Oktavbandes


$L_{PA}[dB(A)]$

Schalldruckpegel des Strömungsgeräusches des VVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt

L_{PA1} [dB(A)]

Schalldruckpegel des Strömungsgeräusches des VVS-Regelgerätes mit Zusatzschalldämpfer, Abewertet, Systemdämpfung berücksichtigt

Geräuschdefinition

L_{PA2} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des VVS-Regelgerätes, A-bewertet, Systemdämpfung berücksichtigt

L_{PA3} [dB(A)]

Schalldruckpegel des Abstrahlgeräusches des VVS-Regelgerätes mit Dämmschale, A-bewertet, Systemdämpfung berücksichtigt

Alle Schalldruckpegel basieren auf 20 μPa.

Volumenströme

\dot{V}_{Nenn} [m³/h] und [l/s]

Nennvolumenstrom (100 %)

- Wert ist abhängig von Geräteserie und Nenngröße
- Werte im Internet und Produktbroschüre publiziert und im Auslegungsprogramm Easy

Grundlagen und Definitionen

- Product Finder hinterlegt
- Referenzwert zur Berechnung von Prozentwerten (z. B. \dot{V}_{max})
- Obere Grenze des Einstellbereiches und maximal möglicher Volumenstrom-Sollwert des VVS-Regelgerätes

$\dot{V}_{min Gerät}$ [m³/h] und [l/s]

Technisch minimaler Volumenstrom

- Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil)
- Werte im Auslegungsprogramm Easy Product Finder hinterlegt
- Untere Grenze des Einstellbereiches und minimaler regelbarer Volumenstrom-Sollwert des VVS-Regelgerätes
- Sollwerte unterhalb V_{min Gerät} (wenn V_{min} gleich Null eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung

\dot{V}_{max} [m³/h] und [l/s]

Kundenseitig einstellbare, obere Grenze des Arbeitsbereiches des VVS-Regelgerätes

- V_{max} kann nur kleiner oder gleich V_{Nenn} eingestellt werden
- Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte

maximale Wert (\dot{V}_{max}) zugeordnet (siehe Kennlinie)

\dot{V}_{min} [m³/h] und [l/s]

Kundenseitig einstellbare, untere Grenze des Arbeitsbereiches des VVS-Regelgerätes

- V_{min} sollte nur kleiner oder gleich V_{max} eingestellt werden
- V_{min} nicht kleiner als V_{min Gerät} einstellen, Regelung sonst instabil oder die Regelklappe schließt
- \dot{V}_{min} gleich Null ist ein gültiger Wert
- Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (V_{min}) zugeordnet (siehe Kennlinie)

∀ [m³/h] und [l/s]

Volumenstrom

Δ['] [± %]

Volumenstromgenauigkeit der eingestellten Volumenströme

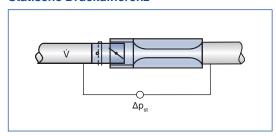
ΔV_{warm} [± %]

Volumenstromgenauigkeit des Warmluftvolumenstroms von VVS-Mischgeräten

Druckdifferenzen

Δp_{st} [Pa]

Statische Druckdifferenz


Δp_{st min} [Pa]

Statische Mindest-Druckdifferenz

- Die statische Mindest-Druckdifferenz entspricht dem Druckverlust des VVS-Regelgerätes bei geöffneter Regelklappe, verursacht durch Strömungswiderstände (Sensorrohre, Klappenmechanik)
- Bei zu geringem Druck am VVS-Regelgerät

- wird selbst bei geöffneter Regelklappe unter Umständen der Sollvolumenstrom nicht erreicht
- Wichtige Größe zur Planung des Kanalnetzes und zur Dimensionierung des Ventilators einschließlich der Drehzahlsteuerung
- Es muss sichergestellt sein, dass unter allen Betriebsbedingungen an allen Regelgeräten ein ausreichender Kanaldruck ansteht und dazu unter anderem der Messpunkt oder die Messpunkte für die Drehzahlsteuerung entsprechend ausgewählt sind

Statische Druckdifferenz

Ausführungen

Verzinktes Stahlblech

- Luftführendes Gehäuse aus verzinktem Stahlblech
- Im Luftstrom befindliche Teile, wie bei der Serie beschrieben

 Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Pulverbeschichtete Oberfläche (P1)

 Luftführendes Gehäuse aus verzinktem Stahlblech, pulverbeschichtet RAL 7001,

- silbergrau
- Im Luftstrom befindliche Teile pulverbeschichtet oder Kunststoff
- Fertigungsbedingt eventuell einige im Luftstrom liegende Teile aus Edelstahl oder Aluminium pulverbeschichtet
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Edelstahl (A2)

- Luftführendes Gehäuse aus Edelstahl Typ 1.4201
- Im Luftstrom befindliche Teile pulverbeschichtet oder Edelstahl
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech