Volumenstrom-Messeinrichtungen Serie VMRK

Variante mit rundem Anschlussstutzen

Statischer Differenzdrucktransmitter

Geprüft nach VDI 6022

Zur Volumenstrom-Messung in Luftleitungen mit kontaminierter Luft

Runde Volumenstrom-Messeinrichtungen aus Kunststoff zur Erfassung oder Überwachung des Volumenstromes

- Manuelle Luftstrommessung
- Permanente Luftstrommessung
- Messwerterfassung für Folgeregler oder Luft-Management-System LABCONTROL
- Drucktransmitter zur automatischen Messwerterfassung werkseitig montiert, verschlaucht und verdrahtet
- Gehäuse aus schwer entflammbarem Polypropylen (PPs)
- Gehäuse-Leckluftstrom nach EN 15727, Klasse C

Optionale Ausstattung und Zubehör

Beidseitig mit Flansch

4.1 - 35

4.3 - 1

Serie VMRK Allgemeine Informationen Bestellschlüssel Strömungstechnische Daten Abmessungen und Gewichte – VMRK Abmessungen und Gewichte – VMRK-FL Einbaudetails Seite 4.1 – 26 4.1 – 28 4.1 – 31 Abmessungen und Gewichte – VMRK 4.1 – 31

Ausschreibungstext

Grundlagen und Definitionen

Varianten

Produktbeispiele

Volumenstrom-Messeinrichtung Variante VMRK

Volumenstrom-Messeinrichtung Variante VMRK-FL

Beschreibung

Detaillierte Informationen zu Drucktransmittern siehe Kapitel K5 – 4.2.

Detaillierte Informationen zum Regelsystem LABCONTROL siehe Katalog Regelsysteme

Anwendung

- Runde Volumenstrom-Messeinrichtungen aus Kunststoff der Serie VMRK zur manuellen oder automatischen Messung von Volumenströmen
- Für kontaminierte Luft geeignet
- Vereinfachung von Inbetriebnahme, Abnahme und Wartung
- Aufgrund geringer Druckdifferenzen zur dauerhaften Installation geeignet

Varianten

- VMRK: Volumenstrom-Messeinrichtung
- VMRK-FL: Volumenstrom-Messeinrichtung beidseitig mit Flansch

Nenngrößen

125, 160, 200, 250, 315, 400

Anbauteile

- Statischer Differenzdrucktransmitter
- LABCONTROL Komponenten für Luft-Management-Systeme

Zubehör

- Beidseitig mit Gegenflansch

Besondere Merkmale

- Messgenauigkeit ± 5 % auch bei ungünstigen Anströmbedingungen
- Wirkdruckbereich von ca. 5 250 Pa
- Geringe Druckdifferenz von ca. 15 24 % vom gemessenen Wirkdruck

Bauteile und Eigenschaften

- Inbetriebnahmebereites Gerät, bestehend aus den mechanischen Bauteilen und optionalen Drucktransmittern
- Mittelwert bildender Differenzdrucksensor zur Luftstrommessung, zu Reinigungszwecken herausziehbar
- Optionale Drucktransmitter werkseitig montiert und verschlaucht
- Hohe Messgenauigkeit der Volumenströme (auch bei Bogenanschluss mit R = 1D)

Konstruktionsmerkmale

- Rundes Gehäuse
- Rohrstutzen passend für Luftleitungen nach DIN 8077
- Anschlussnippel f
 ür Schl
 äuche mit 6 mm Innendurchmesser

Materialien und Oberflächen

- Gehäuse aus schwer entflammbarem Polypropylen (PPs)
- Differenzdrucksensor aus Polypropylen (PP)

Einbau und Inbetriebnahme

- Lageabhängig
- Statischer Differenzdrucktransmitter:
 Nullpunkt kontrollieren
 und gegebenenfalls justieren

Normen und Richtlinien

- Hygieneanforderungen nach VDI 6022
- Gehäuse-Leckluftstrom nach EN 15727, Klasse C

4

Instandhaltung

- Wartungsfrei, da aufgrund der Konstruktion und der verwendeten Materialien keine Abnutzung erfolgt
 Nullpunktabgleich des statischen
- Nullpunktabgleich des statischen Differenzdrucktransmitters einmal j\u00e4hrlich empfohlen

Anbauteile: VARYCONTROL Differenzdrucktransmitter für Serie VMRK

Bestellschlüsseldetail	Differenzdrucktransmitter			
Universal				
BB0	Universalregler mit separatem Differenzdrucktransmitter Fabrikat TROX/Belimo	statisch		

Anbauteile: LABCONTROL Differenzdrucktransmitter für Serie VMRK

Bestellschlüsseldetail	Differenzdrucktransmitter	Messprinzip
EASYLAB		
ELAB	EASYLAB TCU3 (Messwerterfassung für das EASYLAB-System)	statisch
TCU-LON-II		
ТМО	Elektronischer Regler TCU-LON-II mit LonWorks-Schnittstelle	statisch

Technische Daten

Nenngrößen	125 – 400 mm
Volumenstrombereich	25 – 1680 l/s oder 90 – 6048 m³/h
Messgenauigkeit	± 5 % vom Messwert
Wirkdruckbereich	Ca. 5 – 250 Pa
Druckdifferenz der Messeinrichtung (Druckverlust)	15 – 24 % vom gemessenen Wirkdruck
Betriebstemperatur	10 – 50 °C

Bestellschlüssel VARYCONTROL

VMRK

1 Serie

VMRK Volumenstrom-Messeinrichtung, Kunststoff

2 Flansch

Keine Eintragung: Ohne **FL** Flansch beidseitig

3 Nenngröße [mm]

125

160

200

250 315

400

4 Zubehör

Keine Eintragung: Ohne **GK** Gegenflansch beidseitig

5 Anbauteile (Differenzdrucktransmitter)

Keine Eintragung: Ohne

BB0 Statischer Differenzdrucktransmitter

Bestellbeispiel VARYCONTROL VMRK/160/BB0

Nenngröße


Differenzdrucktransmitter

160 mm Statisch

Bestellschlüssel LABCONTROL

EASYLAB

VMRK mit EASYLAB für Messwerterfassung

1 Serie

VMRK Volumenstrom-Messeinrichtung, Kunststoff

2 Flansch

Keine Eintragung: Ohne **FL** Flansch beidseitig

3 Nenngröße [mm]

125 160

200 250

315 400

4 Zubehör

Keine Eintragung: Ohne **GK** Gegenflansch beidseitig

5 Anbauteile

ELAB EASYLAB TCU3

6 Gerätefunktion

EC Erfassung Abluft

7 Spannungsbereich Istwertsignal

E0 Spannungssignal 0 – 10 V DCE2 Spannungssignal 2 – 10 V DC

8 Erweiterungen der Anbaugruppe

Option 1: Stromversorgung Keine Eintragung: 24 V AC

T EM-TRF für 230 V AC

U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung

Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne

L EM-LON für LonWorks FTT-10A

B EM-BAC-MOD-01 für BACnet MS/TPM EM-BAC-MOD-01 für Modbus RTU

I EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne

Z EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich

Bestellschlüssel LABCONTROL EASYLAB

VMRK mit EASYLAB zur Laborabzugsregelung mit externer Ansteuerung (Frequenzumformer)

L

1 Serie

VMRK Volumenstrom-Messeinrichtung, Kunststoff

2 Flansch

Keine Eintragung: Ohne

FL Flansch beidseitig

3 Nenngröße [mm]

125 160

200

250 315

400

4 Zubehör

Keine Eintragung: Ohne

GK Gegenflansch beidseitig

5 Anbauteile (Regelkomponente)

ELAB EASYLAB Regler TCU3

6 Gerätefunktion

Mit Einströmsensor

FH-VS Regelung Einströmgeschwindigkeit Mit Frontschieber-Wegsensor

FH-DS Lineare Regelstrategie

FH-DV Sicherheitsoptimierte Regelstrategie Mit Schaltstufen

für kundenseitige Schaltkontakte

FH-2P 2 Schaltstufen

FH-3P 3 Schaltstufen

Ohne Aufschaltung

FH-F Volumenstrom-Festwert

7 Erweiterungsmodule

Option 1: Versorgungsspannung Keine Eintragung: 24 V AC

EM-TRF für 230 V AC

Т U EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung

> Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne

EM-LON für LonWorks FTT-10A

R EM-BAC-MOD-01 für BACnet MS/TP

M EM-BAC-MOD-01 für Modbus RTU

EM-IP für BACnet IP, Modbus IP und Webserver

R EM-IP mit Echtzeituhr

> Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne

Z **EM-AUTOZERO** Magnetventil für automatischen Nullpunktabgleich

> Option 4: Beleuchtungsschaltung Keine Eintragung: Ohne

S **EM-LIGHT Anschlussbuchse** für die Beleuchtung, schaltbar an der Bedieneinheit (nur in Kombination mit EM-TRF oder EM-TRF-USV)

8 Betriebswerte [m³/h oder l/s]

Abhängig von der Gerätefunktion

VS: $\dot{V}_{min} - \dot{V}_{max}$ DS: $\dot{V}_{min} - \dot{V}_{max}$ DV: $\dot{V}_{min} - \dot{V}_{max}$ 2P: \dot{V}_1 / \dot{V}_2 3P: $\dot{V}_1 / \dot{V}_2 / \dot{V}_3$ F: V₁

Ergänzende Produkte

Bedieneinheit für Laborabzugsregler zur Funktionsanzeige der Regelung nach EN 14175

BE-SEG-** Zweizeichenanzeige BE-LCD-01 40-Zeichen-Display

4

Volumenstrombereiche

Nenngröße	V _{N€}	enn	V _n	nin	C-W	/ert	Δp _{st}	ΔŸ
Nemigrobe	l/s	m³/h	l/s	m³/h	l/s	m³/h	%	± %
125	150	540	25	90	8,6	31	24	5
160	250	900	40	144	15,1	54	22	5
200	405	1458	65	234	24,3	87	19	5
250	615	2214	95	342	38,0	137	17	5
315	1030	3708	155	558	62,0	223	15	5
400	1680	6048	255	918	102,7	370	15	5

C-Wert für eine Luftdichte von 1,2 kg/m³, Δp_{st} in Relation zum gemessenen Wirkdruck

Volumenstromberechnung

Berechnungsgrundlagen

- Grundlage für die Berechnung des Volumenstromes ist der gemessene Wirkdruck
- Wirkdruckmessung mit einem elektronischen Manometer oder einem Schrägrohrmanometer
- Luftdichte $\rho = 1.2 \text{ kg/m}^3$

Volumenstromberechnung für eine Luftdichte von 1,2 kg/m³

$$\dot{V} = C \times \sqrt{\Delta p_{_{W}}}$$

Volumenstromberechnung für andere Luftdichten

$$\dot{V} = C \times \sqrt{\Delta p_{_{W}}} \times \sqrt{\frac{1.2}{\rho}}$$

Berechnungsbeispiel

Vorgaben

- VMRK/160
- Δp_w = 100 Pa (Vom Manometer abgelesener Wirkdruck)
- Volumenstrom V in m³/h

Gerätedaten

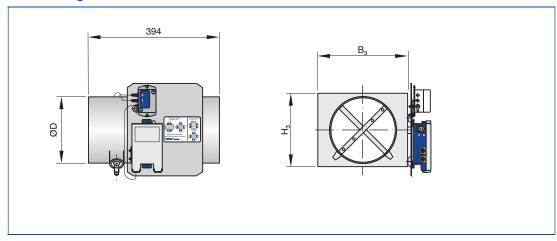
- C-Wert aus Tabelle: $C = 54 \text{ m}^3/\text{h} (15,1 \text{ l/s})$

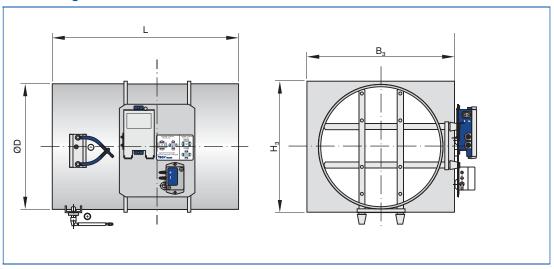
Rechenverfahren

$$\dot{V} = 57 \times \sqrt{100}$$

$$\dot{V} = 570 \text{ m}^3/\text{h}$$

Beschreibung


- Volumenstrom-Messeinrichtung
- Rohrstutzen zum Anschluss der Luftleitungen


Volumenstrom-Messeinrichtung Variante VMRK

Abmessungen

VMRK Nenngröße 125 – 200

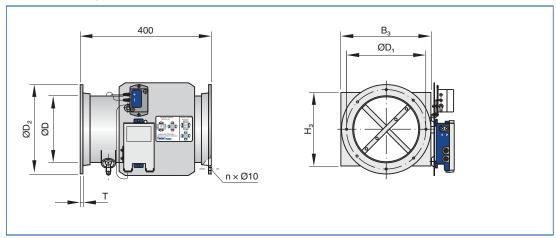
VMRK Nenngröße 250 – 400

Abmessungen [mm] und Gewichte [kg]

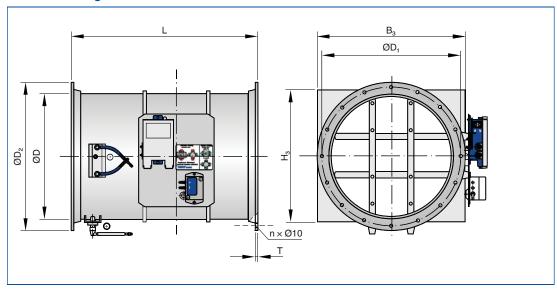
Nenngröße	ØD	L	B_3	H ₃	m
Nemigrobe		kg			
125	125	394	195	145	2,0
160	160	394	230	180	2,2
200	200	394	270	220	2,5
250	250	594	320	270	3,5
315	315	594	385	335	5,1
400	400	594	470	420	6,9

Abmessungen und Gewichte - VMRK-FL

Beschreibung


Volumenstrom-Messeinrichtung Variante VMRK-FL

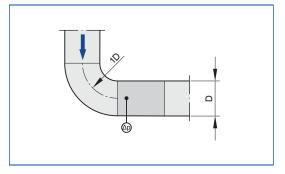
Volumenstrom-Messeinrichtung


Beidseitig mit Flansch zum lösbaren Anschluss der Luftleitungen

Abmessungen

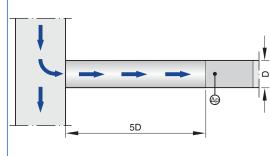
VMRK-FL Nenngröße 125 – 200

VMRK-FL Nenngröße 250 – 400


Abmessungen [mm] und Gewichte [kg]

Nenngröße	ØD	L	B_3	H ₃	ØD₁	$ØD_2$		Т	m
Neringrobe			m	m			n	mm	kg
125	125	400	195	145	165	185	8	8	2,2
160	160	400	230	180	200	230	8	8	2,6
200	200	400	270	220	240	270	8	8	3,0
250	250	600	320	270	290	320	12	8	4,4
315	315	600	385	335	350	395	12	10	6,1
400	400	600	470	420	445	475	16	10	8,2

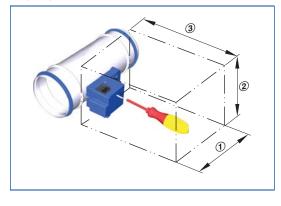
Anströmbedingungen


Die Volumenstromgenauigkeit ΔV gilt für gerade Anströmung. Formstücke wie Bögen, Abzweige oder Querschnittsveränderungen verursachen Turbulenzen, die die Messung beeinflussen können. Bei Ausführung von Luftleitungsanschlüssen, wie z.B. dem Abzweig von einer Hauptleitung, ist die EN 1505 zu beachten. Für manche Einbausituationen sind gerade Anströmlängen erforderlich.

Bogenanschluss

Ein Bogen mit mindestens 1D Krümmungsradius – ohne zusätzliche gerade Anströmlänge vor der Volumenstrom-Messeinrichtung – hat keinen nennenswerten Einfluss auf die Volumenstromgenauigkeit.

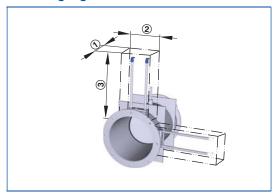
Abzweig von einer Hauptleitung



Das Abzweigen einer Strömung von einer Hauptleitung verursacht starke Turbulenzen. Die angegebene Volumenstromgenauigkeit $\Delta\dot{V}$ ist nur mit mindestens 5D gerader Anströmlänge zu erreichen. Kürzere Anströmlängen sind mit einem Lochblech in der Abzweigleitung vor der Messeinrichtung möglich. Direkter Anschluss, auch mit Lochblech, kann ein instabiles Istwertsignal zur Folge haben.

Platzbedarf für Inbetriebnahme und Instandhaltung

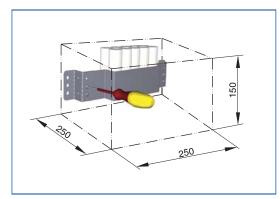
Um die Arbeiten zur Inbetriebnahme und Instandhaltung zu ermöglichen, ausreichenden Bauraum im Bereich der Anbauteile freihalten. Gegebenenfalls sind Revisionsöffnungen in ausreichender Größe erforderlich, sodass die Anbauteile leicht zugänglich sind.


Zugänglichkeit der Anbauteile

Platzbedarf

Anbauteile	1	2	3
Alibautelle		mm	
Ohne Anbauteile	200	200	200
VARYCONTROL			
Universalregler	300	320	300
LABCONTROL			
EASYLAB	350	350	400
EASYLAB	350	350	400

Zugänglichkeit der Sensorrohre zur Reinigung



Platzbedarf

Nannaräßa	1	2	3
Nenngröße		mm	
125 – 200	100	100	D
250 – 400	100	160	D

D: Gehäusedurchmesser

Zugänglichkeit der Anbauteile

Separater Bauraum für Befestigung und Zugänglichkeit des Notstromakkumulators (Zubehör LABCONTROL EASYLAB)

Standardtext

Der nebenstehende Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts. Texte für Varianten generiert unser Auslegungsprogramm Easy Product Finder.

Volumenstrom-Messeinrichtung aus dem Kunststoff PPs in runder Bauform zur Messung von Volumenströmen in RLT-Anlagen, in sechs Nenngrößen.

Zur manuellen Bestimmung von Volumenströmen oder zur permanenten Überwachung des Istwertsignales.

unser Auslegungsprogramm
Easy Product Finder.

Inbetriebnahmebereites Gerät, bestehend
aus dem Gehäuse mit dem Mittelwert
bildenden Differenzdrucksensor.
Rohrstutzen, passend für Luftleitungen
nach DIN 8077.

Gehäuse-Leckluftstrom nach EN 15727, Klasse C.

Besondere Merkmale

- Messgenauigkeit ± 5 % auch bei ungünstigen Anströmbedingungen
- Wirkdruckbereich von ca. 5 250 Pa
- Geringe Druckdifferenz von ca. 15 24 % vom gemessenen Wirkdruck

Materialien und Oberflächen

- Gehäuse aus schwer entflammbarem Polypropylen (PPs)
- Differenzdrucksensor aus Polypropylen (PP)

Technische Daten

- Nenngrößen 125 400 mm
- Volumenstrombereich:
- 25 1680 l/s oder 90 6048 m³/h
- Wirkdruckbereich: Ca. 5 250 Pa
- Druckdifferenz der Messeinrichtung (Druckverlust):
 - 15 24 % vom gemessenen Wirkdruck
- Betriebstemperatur: 10 50 °C

Anbauteile

Volumenstrommessung mit statischem Differenzdrucktransmitter mit Istwertsignal zur Einbindung in die Gebäudeleittechnik.

- Versorgungsspannung 24 V AC/DC
- Signalspannungen 0 10 V DC oder 2 – 10 V DC
- oder 2 10 V DC – TCU-LON-II:
 - Einbindung über LonWorks Technologie
- EASYLAB: Über 0 10 V DC Signale oder über Erweiterungskarten (LonWorks, BACnet MS/TP, Modbus-RTU)

	חמו	unc	ıed	atan
Aus	ICY	ulle	Jou	aten

			2 /4 =
	١/	li li	mº/hI
_	v	li i	111 / 111

Bestelloptionen VARYCONTROL

1 Serie

VMRK Volumenstrom-Messeinrichtung, Kunststoff

2 Flansch

Keine Eintragung: Ohne

FL Flansch beidseitig

3 Nenngröße [mm]

□ 125

□ 160

□ 200

□ 250

□ 315□ 400

4 Zubehör

Keine Eintragung: Ohne
☐ **GK** Gegenflansch beidseitig

5 Anbauteile (Differenzdrucktransmitter)

Keine Eintragung: Ohne

BB0 Statischer Differenzdrucktransmitter

Bestelloptionen
LABCONTROL
EASYLAB

VMRK	Volumenstrom-Messeinrichtung Kunststoff
2 Flans	Keine Eintragung: Ohne
□ FL	Flansch beidseitig
3 Nenn 125 160 200 250 315 400	größe [mm]
4 Zubel	
□ СК	Keine Eintragung: Ohne Gegenflansch beidseitig
5 Anba	uteile EASYLAB TCU3

6 Gerä □ EC	tefunktion Erfassung Abluft
7 Span ☐ E0 ☐ E2	Spannungssignal 0 – 10 V DC Spannungssignal 2 – 10 V DC
B Erwe	Option 1: Stromversorgung Keine Eintragung: 24 V AC EM-TRF für 230 V AC EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung
□ L □ B □ M □ I	Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne EM-LON für LonWorks FTT-10A EM-BAC-MOD-01 für BACnet MS/TP EM-BAC-MOD-01 für Modbus RTU EM-IP für BACnet IP, Modbus IP und Webserver EM-IP mit Echtzeituhr
□ z	Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich

Bestelloptionen
LABCONTROL
EASYLAB

	Serie IRK	Volumenstrom-Messeinrichtung, Kunststoff
	Flans FL	ch Keine Eintragung: Ohne Flansch beidseitig
	Nenn 125 160 200 250 315 400	größe [mm]
	Zubel GK	nör Keine Eintragung: Ohne Gegenflansch beidseitig
	Anbaı AB	uteile (Regelkomponente) EASYLAB Regler TCU3
6	Gerät	efunktion Mit Einströmsensor
		Regelung Einströmgeschwindigkeit Mit Frontschieber-Wegsensor
		SLineare Regelstrategie / Sicherheitsoptimierte Regelstrategie Mit Schaltstufen für kundenseitige Schaltkontakte
	FH-3F	2 Schaltstufen 2 3 Schaltstufen Ohne Aufschaltung Volumenstrom-Festwert
	1 11-1	volumensuom-i estwert

7 Erwe	eiterungsmodule
□ T □ U	Option 1: Versorgungsspannung Keine Eintragung: 24 V AC EM-TRF für 230 V AC EM-TRF-USV für 230 V AC, bietet unterbrechungsfreie Stromversorgung
□ L □ B □ M □ I	Option 2: Kommunikationsschnittstelle Keine Eintragung: Ohne EM-LON für LonWorks FTT-10A EM-BAC-MOD-01 für BACnet MS/TP EM-BAC-MOD-01 für Modbus RTU EM-IP für BACnet IP, Modbus IP und Webserver EM-IP mit Echtzeituhr
□ Z	Option 3: Automatischer Nullpunktabgleich Keine Eintragung: Ohne EM-AUTOZERO Magnetventil für automatischen Nullpunktabgleich
□ S	Option 4: Beleuchtungsschaltung Keine Eintragung: Ohne EM-LIGHT Anschlussbuchse für die Beleuchtung, schaltbar an der Bedieneinheit (nur in Kombination mit EM-TRF oder EM-TRF-USV)

8 Betriebswerte [m³/h oder l/s]

Abhängig von der Gerätefunktion

VS: $\dot{V}_{min} - \dot{V}_{max}$ DS: $\dot{V}_{min} - \dot{V}_{max}$ DV: $\dot{V}_{min} - \dot{V}_{max}$ 2P: $\dot{V}_{1} / \dot{V}_{2}$ 3P: $\dot{V}_{1} / \dot{V}_{2} / \dot{V}_{3}$ F: \dot{V}_{1}

Ergänzende Produkte

Bedieneinheit für Laborabzugsregler zur Funktionsanzeige der Regelung nach EN 14175

□ BE-SEG-** Zweizeichenanzeige□ BE-LCD-01 40-Zeichen-Display

Volumenstrommessung Grundlagen und Definitionen

- Produktauswahl
- Hauptabmessungen
- Definitionen
- Auslegung und Auslegungsbeispiel

Produktauswahl

	Serie							
	VMR	VME	VMRK	VMLK				
Anlagenart								
Zuluft	•	•	•	•				
Abluft	•	•		•				
Luftleitungsanschluss								
Rund	•		•	•				
Rechteckig		•						
Volumenstrombereich								
Bis [m³/h]	6048	36360	6048	1854				
Bis [l/s]	1680	10100	1680	515				
Luftqualität								
Gefiltert	•	•	•	•				
Büroabluft	•	•	•	•				
Verschmutzt	0	0	•	•				
Kontaminiert	0	0	•	•				
Volumenstrommessung								
Manuell	•	•	•					
Automatisch	0	0	0	•				
Besondere Bereiche								
Laboratorien, Reinräume, Operationssäle (EASYLAB, TCU-LON II)	•	•	•	•				
•	Möglich							
0	Bedingt möglich: In Verbindung mit beständiger Gerätevariante und/oder bestimmtem Differenzdrucktransmitter							
	Nicht Möglich							

Volumenstrommessung

Grundlagen und Definitionen

Hauptabmessungen

ØD [mm]

Regelgeräte aus Stahlblech:

Außendurchmesser des Anschlussstutzens Regelgeräte aus Kunststoff:

Innendurchmesser des Anschlussstutzens

$\emptyset D_1$ [mm]

Lochkreisdurchmesser von Flanschen

$ØD_2$ [mm]

Außendurchmesser von Flanschen

$\emptyset D_4$ [mm]

Innendurchmesser der Schraubenlöcher von Flanschen

L [mm]

Gerätelänge einschließlich Anschlussstutzen

L₁ [mm]

Gehäuse- oder Dämmschalenlänge

B [mm]

Breite der Luftleitung

B₁ [mm]

Lochabstand im Luftleitungsprofil (Breite)

B₂ [mm]

Außenabmessung des Luftleitungsprofils (Breite)

B_3 [mm]

Gerätebreite

H [mm]

Höhe der Luftleitung

H₁ [mm]

Lochabstand im Luftleitungsprofil (Höhe)

H_2 [mm]

Außenabmessung des Luftleitungsprofils (Höhe)

H_3 [mm]

Gerätehöhe

n[]

Anzahl Schraubenlöcher von Flanschen

T [mm]

Flanschdicke

m [kg]

Gerätegewicht (Masse) einschließlich Anbauteile zur automatischen Differenzdruckmessung

Definitionen

\dot{V}_{Nenn} [m³/h] und [l/s]

Nennvolumenstrom (100 %)

\dot{V}_{min} [m³/h] und [l/s]

Volumenstrom

Δ['] [± %]

Volumenstromgenauigkeit der gemessenen Volumenströme

C-Wert [m³/h] und [l/s]

Gerätekonstante für eine Luftdichte von 1,2 kg/m³

Δp_w [Pa]

Wirkdruck

Δp_{st} [%]

Statische Druckdifferenz,

in Relation zum gemessenen Wirkdruck

Ausführungen

Verzinktes Stahlblech

- Luftführendes Gehäuse aus verzinktem Stahlblech
- Im Luftstrom befindliche Teile, wie bei der Serie beschrieben
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Pulverbeschichtete Oberfläche (P1)

- Luftführendes Gehäuse aus verzinktem Stahlblech, pulverbeschichtet RAL 7001, silbergrau
- Im Luftstrom befindliche Teile pulverbeschichtet oder Kunststoff
- Fertigungsbedingt eventuell einige im Luftstrom liegende Teile aus Edelstahl oder Aluminium pulverbeschichtet
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Edelstahl (A2)

- Luftführendes Gehäuse aus Edelstahl Typ 1.4201
- Im Luftstrom befindliche Teile pulverbeschichtet oder Edelstahl
- Außenliegende Bauteile, beispielsweise Konsolen und Deckel, in der Regel aus verzinktem Stahlblech

Auslegung anhand dieses Kataloges

Die Auslegung der Volumenstrom-Messeinrichtungen anhand dieses Kataloges erfolgt mit Hilfe der strömungstechnischen Daten. Zu allen Nenngrößen sind die Volumenstrombereiche angegeben.

Auslegungsbeispiel

Gegeben

 $\dot{V}_{max} = 280 \text{ l/s } (1010 \text{ m}^3/\text{h})$

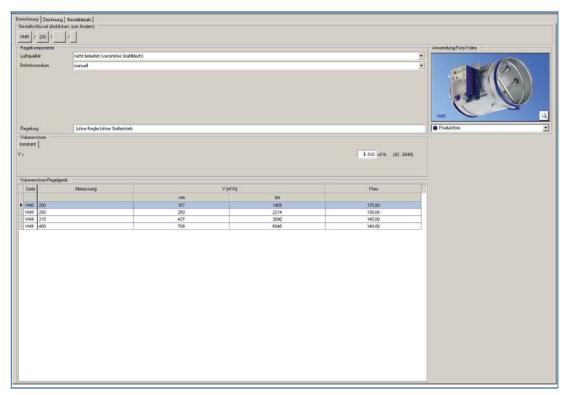
Schnellauslegung

VMR/200

 $C = 25,5 \text{ l/s} (92 \text{ m}^3/\text{h})$

 $\Delta p_{st} = 19 \%$

 $\Delta p_w = 121 \text{ Pa}$


 $\Delta p_{st} = 23 \text{ Pa} (121 \text{ Pa} \times 0.19)$

Easy Product Finder

Mit dem Easy Product Finder können Sie das Produkt mit Ihren projektspezifischen Daten dimensionieren.

Den Easy Product Finder finden Sie auf unserer Website.

4