Splitters Type MKA

For increased insertion loss and broadband attenuation even in the low frequency range

Energy-saving splitters with resonating panels, ready to be used in air conditioning systems

- Attenuation effect due to resonance and absorption
- Energy efficient due to aerodynamically profiled frame (radius > 15 mm)
- Acoustic data measured to ISO 7235
- Absorption material is biosoluble and hence hygienically safe
- Absorption material faced with glass fibre fabric as a protection against erosion due to airflow velocities up to 20 m/s
- Absorption material non-combustible, to EN 13501, fire rating class A1
- Intermediate sizes in increments of 1 mm
- Operating temperature up to 100 °C

Optional equipment and accessories

- Additional perforated sheet metal to protect the absorption material
- Stainless steel, aluminium and PUR-coated constructions upon request

Splitter frames with folded edges

Tested to VDI 6022

02/2017 – DE/en TROX® TECHNIK

Splitters General information

MKA

	Туре			Page				
	MKA Gene	eral information		MKA – 2				
	Func	tion		MKA – 4				
	Tech	nical data		MKA – 5				
	Quicl	k sizing		MKA – 6				
	Spec	ification text		MKA – 8				
	Orde	r code		MKA – 9				
	Dime	ensions and weight	t	MKA – 10				
	Insta	llation details		MKA – 12				
	Basic	; information and r	nomenclature	MKA – 15				
Application	Application - Sound attenuator splitters with	resonating	 Multi-section construction dimensions 	available for large				
	panels, Type MKA, used for the	reduction of fan						
	noise and air-regenerated noise	e in air	Nominal sizes					
	conditioning systems		- H: 300, 400, 500, 600, 70	0, 800, 900, 1000,				
	 Attenuation effect due to absorption 	ption and	1100, 1200, 1300, 1400, 1	1500, 1600, 1700, izaa 150 - 2500 mm ir				
	resonance	4h - 1	increments of 1 mm)	zes 150 – 2500 mm ir				
	 Broadband attenuation even in frequency range of critical fan n 		 Height subdivided: 2501 - 	- 5000 mm. in				
	 Hygiene tested and certified to 	VDI 6022	increments of 1 mm	,				
	 For use in potentially explosive 	atmospheres	- L: 500, 750, 1000, 1250, 1500 mm					
	(ATEX), zones 1, 2, 21 and 22 ((outside)	(intermediate sizes 501 -	2500 mm in				
	(, , , , _ ,	,00.000,000	increments of 1 mm)					
	Special characteristics		 Length subdivided: 2501 - 	– 3000 mm in				
	 Resonating panels ensure incre 	eased insertion	increments of 1 mm					
	loss in the frequency range of c	ritical fan noise	 Undivided construction: H 	I + L 4000 mm max.,				
	 Up to 30 % lower differential pre Energy efficient and/or energy officient 	essure	H and L 1500 mm max. (If one dimension is 1500 mm, the other one must not exceed					
	- Energy enicient and/or space s	aving due to	1500 mm)	nust not exceed				
	 Hygiene tested and certified 		1300 mmy					
Description	Variants		(construction with perform	ted sheet metal up to				
Description	 MKA100: splitter thickness 100 	mm	300 °C for 8h max)	led sheet metal up to				
	 MKA200: splitter thickness 200 	mm						
	 MKA230: splitter thickness 230 	mm	Materials and surfaces					
	·		 Splitter frames, centre mu 	Illion and resonating				
	Construction		panels made of galvanise	d sheet steel				
	Surface of splitter area not covere	d by a	 Absorption material is mir 	neral wool				
	resonating panel		Minorolwool					
	 F: Glass TIDRE TADRIC I: Glass fibro fobrio and additio 	nal perforated	- To EN 13501 fire retine of	lace A1 non				
	 L. Glass IIUTE Idultic and 800000 sheet metal to protect the above 	rntion material	combustible	1033 A 1, 11011-				
	sheet metal to protect the abso	i puon materiai	- BAL quality mark BAL-G7	7 388				
	Parts and characteristics		 Biosoluble and hence byc 	ienically safe				
	 Aerodynamically profiled frame 	1	according to the German	TRGS 905 (Technical				
	 Absorption material and resonant 	ating panels	Rules for Hazardous Subs	stances) and				
	fitted to reduce air-regenerated	noise by	EU directive 97/69/EC					
	absorption and resonance		 Eaced with class fibre fab 	ric as a protection				

- Faced with glass fibre fabric as a protection against erosion through airflow velocities of up to 20 m/s
- Inert to fungal and bacterial growth

Standards and guidelines

- Insertion loss and sound power level of airregenerated noise tested to ISO 7235
- Meets the hygiene requirements of VDI 6022, DIN 1946, parts 1 and 2 as well as of VDI 3803
- Directive 94/9/EC: Equipment and protective systems intended for use in potentially

Useful additions

attenuator splitters

Construction features

- U-sheets/clamp sheets to join subdivided

- Aerodynamically profiled splitter frame

(radius > 15 mm) that enables a reduction of

turbulence both upstream and downstream;

frame with grooves for increased rigidity

- Frame edges are folded to protect the infill

Operating temperature up to 100 °C

02/2017 - DE/en

explosive atmospheres

materials are not subject to wear

Maintenance

- Maintenance-free as construction and

Functional description

The attenuation effect of the MKA splitters is due to absorption and resonance. The splitters have a mineral wool infill as absorption material. Part of the splitter surface that runs parallel to the airflow is covered with resonating panels. These panels start oscillating due to the sound (resonance) and hence absorb sound energy. Resonance works best in the frequency range of critical fan noise. There is a higher attenuation across a wider frequency range when compared to mere absorption splitters.

Schematic illustration of MKA100

Schematic illustration of MKA200, 230

Splitter thickness	100, 200, 230 mm
Nominal sizes	150 × 500 mm – 1499 × 2500, 2500 × 1499 or 1500 × 1500 mm
Height subdivided	2501 – 5000 mm
Length subdivided	1501 – 3000 mm
Intermediate sizes	In increments of 1 mm
Operating temperature	Up to 100 °C

The length (L) of sound attenuator splitters refers to the airflow direction

Quick sizing tables provide a good overview of the insertion loss and of differential pressures for different airway widths and airflow velocities. Intermediate values can be calculated with our Easy Product Finder design programme. The sound power levels L_{WA} apply to sound attenuators with a cross-sectional area (B × H) of 1 m².

The differential pressures apply to sound attenuators with a height of 1 m.

MSA, MKA, XSA, XKA, RKA, air-regenerated noise

- / / - /	, , , , , , , , , , , , , , , , , , ,									
٧ _s	m/s	4	6	8	10	12	14	16	18	20
L _{WA}	dB(A)	21	31	38	43	48	51	55	58	60

MKA100, MSA100, inse	rtion l	oss and differential pressure	
		Contro froquency f [Hz]	

					v _s [m/s]								
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20	
					D	e					∆p _{st}		
mm	mm				Н	z				Pa			
500	40	4	10	11	13	21	27	24	18	5	32	>80	
1000	40	5	13	20	23	31	38	32	26	7	44	>80	
1000	60	5	11	17	19	28	32	27	21	5	33	>80	
	40	6	16	30	32	42	48	40	34	9	55	>80	
1500	60	6	14	25	28	38	41	33	27	6	38	>80	
	100	4	10	14	19	29	28	19	14	5	29	>80	
	40	8	19	39	42	50	50	49	42	11	66	>80	
2000	60	7	16	32	36	47	50	40	34	7	44	>80	
2000	100	5	12	19	25	37	35	23	16	5	32	>80	
	200	3	9	10	17	25	15	9	8	4	25	>80	
	40	9	22	48	50	50	50	50	50	12	77	>80	
2500	60	8	19	40	45	50	50	47	40	8	50	>80	
2500	100	6	14	24	30	45	41	27	19	6	34	>80	
	200	3	12	12	21	33	19	12	11	4	26	>80	
	40	10	25	50	50	50	50	50	50	14	>80	>80	
3000	60	9	22	48	50	50	50	50	46	9	56	>80	
3000	100	7	16	28	36	50	47	31	22	6	37	>80	
	200	2	14	15	26	41	24	16	14	4	27	>80	

				Centr	e frequ	ency f	" [Hz]			v _s [m/s]			
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20	
					D	e				Δp _{st}			
mm	mm	Hz				Ра							
500	50	5	7	19	21	26	22	17	14	9	58	>80	
500	100	2	4	12	12	15	11	9	8	\vee_s [m/s] 20 4 10 2 \sim \sim Pa 4 9 58 8 4 9 58 31 20 111 67 11 67 11 67 11 67 12 21 <th>>80</th>	>80		
	50	6	16	33	39	41	39	26	20	11	67	>80	
1000	100	4	10	22	23	26	19	13	11	6	35	>80	
	200	2	7	13	12	12	10	8	6	3	21	>80	
1500	50	9	22	44	50	50	50	34	25	12	75	>80	
	100	5	15	32	33	37	25	16	14	6	40	>80	
	200	3	9	19	18	15	12	10	7	4	23	>80	
	400	1	6	10	8	8	6	4	4	2	15	61	
	50	12	29	50	50	50	50	43	29	13	>80	>80	
2000	100	6	19	42	44	47	31	19	17	7	44	>80	
2000	200	4	12	25	23	18	15	12	9	4	25	>80	
	400	1	8	13	10	10	8	5	5	3	17	67	
	50	14	38	50	50	50	50	49	35	15	>80	>80	
2500	100	8	25	50	50	50	38	23	18	8	48	>80	
2000	200	5	16	30	29	23	16	13	10	4	28	>80	
	400	2	10	16	13	12	9	6	5	3	18	72	
	50	17	48	50	50	50	50	50	40	16	>80	>80	
3000	100	10	30	50	50	50	44	26	19	8	53	>80	
0000	200	6	19	35	35	27	17	15	11	5	30	>80	
	400	3	13	19	15	14	10	7	6	3	19	77	

MKA200, MSA200, insertion loss and differential pressure

MKA230, MSA230, insertion loss and differential pressure

					v _s [m/s]								
L	S	63	125	250	500	1000	2000	4000	8000	4	10	20	
			D _e Δp _{st}										
mm	mm				H	lz				Ра			
500	60	3	7	16	19	21	17	14	14	9	57	>80	
500	115	2	5	11	12	13	10	9	10	5	31	>80	
	60	7	13	27	30	35	25	18	18	10	66	>80	
1000	115	4	10	20	20	22	15	12	13	6	35	>80	
	230	1	7	12	10	8	4	6	8	3	20	>80	
	60	11	19	38	41	49	33	21	21	12	74	>80	
1500	115	7	14	28	28	30	20	15	15	6	40	>80	
	230	2	10	18	15	10	6	9	9	4	23	>80	
	60	15	24	50	50	50	42	25	25	13	>80	>80	
2000	115	9	19	37	36	39	26	18	18	7	44	>80	
2000	230	3	13	24	19	13	8	11	10	4	25	>80	
	460	0	7	10	3	0	0	3	3	3	16	64	
	60	19	30	50	50	50	50	29	28	15	>80	>80	
2500	115	12	24	46	44	47	31	21	20	8	48	>80	
2500	230	4	16	29	24	16	11	13	12	4	27	>80	
	460	0	9	13	4	0	0	5	3	3	17	69	
	60	24	36	50	50	50	50	32	32	16	>80	>80	
2000	115	14	28	50	50	50	36	24	23	8	52	>80	
3000	230	4	19	35	29	18	13	15	13	5	29	>80	
	460	0	11	16	6	0	0	7	3	3	19	74	

Splitters Specification text

This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design programme.

Sound attenuator splitters used for the reduction of fan noise and air-regenerated noise in air conditioning systems. Attenuation effect due to absorption and resonance. Energy-saving as well as hygiene tested and certified.

Installation kit consists of an aerodynamically profiled frame (radius > 15 mm), absorption material and resonating panels.

Frame edges are folded to protect the sound absorbing infill.

Insertion loss and sound power level of the airregenerated noise tested to ISO 7235. Meets the hygiene requirements of VDI 6022, DIN 1946, parts 2 and 4, as well as of VDI 3803.

Special characteristics

- Resonating panels ensure increased insertion loss in the frequency range of critical fan noise
- Up to 30 % lower differential pressure
- Energy efficient and/or space saving due to aerodynamically profiled frame
- Hygiene tested and certified
- Multi-section construction available for large dimensions

Materials and surfaces

- Splitter frames, centre mullion and resonating panels made of galvanised sheet steel
- Absorption material is mineral wool

Mineral wool

- To EN 13501, fire rating class A1, noncombustible
- RAL quality mark RAL-GZ 388
- Biosoluble and hence hygienically safe according to the German TRGS 905 (Technical Rules for Hazardous Substances) and EU directive 97/69/EC

- Faced with glass fibre fabric as a protection against erosion through airflow velocities of up to 20 m/s
- Inert to fungal and bacterial growth

Construction

Surface of splitter area not covered by a resonating panel

- F: Glass fibre fabric
- L: Glass fibre fabric and additional perforated sheet metal to protect the absorption material

Technical data

- Splitter thickness: 100, 200, 230 mm
- Nominal sizes: 150 × 500 mm 1499 × 2500, 2500 × 1499 or 1500 × 1500 mm
- Height subdivided: up to 5000 mm
- Length subdivided: up to 3000 mm
- Intermediate sizes: in increments of 1 mm
- Operating temperature: up to 100 °C

The length (L) of splitter attenuators refers to the airflow direction.

Sizing data

- B______ [mm] – H______
- [mm]
- L (in airflow direction) _____ ____ [mm] - V
- [m³/h]
- D_a at 250 Hz _____ [dB]
- Δp_{st} [Pa]

The length (L) of sound attenuator splitters and splitter attenuators refers to the airflow direction. Remember this with regard to vertical ducting.

MKA

MKA200 – F / 600×1500										
1 Type MKA Sound attenuator splitter with resonating panels	Height H [mm] Is Length L in airflow direction [mm]									
 2 Splitter thickness [mm] 100 200 230 										
 3 Splitter surface F Glass fibre fabric L Glass fibre fabric and perforated sheet metal Order example: MKA100–L/1500×1500 										
Splitter thickness Splitter surface Height Length	100 mm Glass fibre fabric and perforated sheet metal 1500 mm									

Fitting accessories to join subdivided attenuator splitters

SD – KBLECH	
1	

1 Part

SD-KBLECH	Clamp sheet for MKA, XKA,
RKA200	
SD-KAP100	U-sheet for MKA100, XKA100
SD-KAP200	U-sheet for MKA200, XKA200,
RKA200	
SD-KAP230	U-sheet for MKA230, XKA230
SD-KAP300	U-sheet for XKA300

- H: 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800 mm (intermediate sizes 150 – 2500 mm in increments of 1 mm)
- Height subdivided: 2501 5000 mm, in increments of 1 mm
- L: 500, 750, 1000, 1250, 1500 mm (intermediate sizes 501 – 2500 mm in increments of 1 mm)
- Length subdivided: 2501 3000 mm in increments of 1 mm
- Undivided construction: H + L 4000 mm max., H and L 1500 mm max. (if one dimension is 1500 mm, the other one must not exceed 1500 mm)

The total weight of a splitter sound attenuator is the combined weight of the casing (with standard flange or angle section frame) and all splitters. The total weight for intermediate sizes can be generated with our Easy Product Finder design programme.

MKA

MKA100, weights

	(Glass fi	bre fat	oric (-F)	Glass fibre fabric and perforated sheet metal (-L)							
Н	L [mm]												
	500	750	1000	1250	1500	500	750	1000	1250	1500			
mm						kg							
300	2	3	4	5	6	3	4	5	6	8			
600	4	5	7	8	10	5	7	9	11	13			
900	5	7	9	11	13	7	10	13	16	18			
1200	7	10	12	15	17	9	13	16	20	24			
1500	8	12	15	18	21	11	16	20	25	29			
1800	10	14	19	23	27	14	19	25	31	36			

MKA200, weights

	C	Glass fi	bre fat	oric (-F)	Glass fibre fabric and perforated sheet metal (-L)								
Н	L [mm]													
	500	750	1000	1250	1500	500	750	1000	1250	1500				
mm		kg												
300	4	5	6	7.5	9	4	6	7	9	11				
600	6	8	10	12	15	7	10	12	15	18				
900	8	11	14	17	20	10	14	17	21	25				
1200	10	14	18	22	26	13	18	22	27	32				
1500	13	17	22	27	31	15	21	27	33	40				
1800	16	22	28	34	40	19	27	34	42	50				

MKA230, weights

	Glass fibre fabric (-F)					Glass fibre fabric and perforated sheet metal (-L)				
Н	L [mm]									
	500	750	1000	1250	1500	500	750	1000	1250	1500
mm	kg									
300	4	5	7	8	10	5	6	8	10	12
600	6	9	11	14	16	8	11	13	16	19
900	9	12	16	19	22	11	15	19	23	27
1200	11	16	20	24	28	14	19	24	30	35
1500	14	19	24	29	34	17	23	30	36	43
1800	18	24	31	37	44	21	29	37	45	54

- Splitters are supplied as ready-to-install kits
- Follow the installation information and comply with the general codes of good practice in order to achieve the given performance data
- Up to height H = 1200 mm: any installation orientation, but we recommend upright installation of splitters
- From height H = 1201 mm: upright installation only
- The length (L) of sound attenuator splitters and splitter sound attenuators refers to the airflow direction; be sure to note how width, height and length are defined, particularly in case of a vertical airflow
- Installation in ducts outside of closed rooms requires sufficient protection against the effects of weather

Upstream conditions after bends, junctions or a narrowing or widening of the duct, vertical upstream section, splitters upright

Upstream conditions after bends, junctions or a narrowing or widening of the duct, vertical upstream section, splitters horizontal

Horizontal installation only for splitters up to height 1200 mm

Upstream conditions after bends, junctions or a narrowing or widening of the duct, horizontal upstream section, splitters upright

Upstream conditions after bends, junctions or a narrowing or widening of the duct, horizontal upstream section, splitters horizontal

Correct installation of MKA100 splitters

H Height of the sound attenuator

Horizontal installation only for splitters up to height 1200 mm

Correct installation of MKA200 and MKA230 splitters

Assembly of subdivided splitters

Principal dimensions

ØD [mm] Outer diameter of the spigot

ØD₃ [mm] Outer diameter of circular silencers

L [mm] Length of attenuator/silencer including spigot (in airflow direction)

L₁ [mm] Length of acoustic cladding and acoustically effective length

B [mm]

Nomenclature

f_m [Hz] Octave band centre frequency

L_{WA} [dB(A)] A-weighted sound power level of air-regenerated noise

D_e [dB] Insertion loss

V [m³/h] and [l/s] Volume flow rate Attenuator width and duct width (upright splitters)

H [mm] Attenuator height and duct height (upright splitters)

T [mm] Splitter thickness

S [mm] Airway width

n [] Number of flange screw holes

m [kg] Weight

Δp_{st} [Pa]

Static differential pressure

All sound power levels are based on 1 pW.

All values were measured in a TROX lab and to EN ISO 7235. Intermediate values may be achieved by interpolation.

Lab measurements exceeding 50 dB are indicated as 50 dB, in line with common practice.